510 research outputs found
SUMMERTIME DISTRIBUTION OF PAN AND OTHER REACTIVE NITROGEN SPECIES IN THE NORTHERN HIGH-LATITUDE ATMOSPHERE OF EASTERN CANADA
Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B
Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
Recommended from our members
Model study of tropospheric trace species distributions during PEM-West A
A three-dimensional mesoscale transport/photochemical model is used to study the transport and photochemical transformation of trace species over eastern Asia and western Pacific for the period from September 20 to October 6, 1991, of the Pacific Exploratory Mission-West A experiment. The influence of emissions from the continental boundary layer that was evident in the observed trace species distributions in the lower troposphere over the ocean is well simulated by the model. In the upper troposphere, species such as O3, NOy (total reactive nitrogen species), and SO2 which have a significant source in the stratosphere are also simulated well in the model, suggesting that the upper tropospheric abundances of these species are strongly influenced by stratospheric fluxes and upper tropospheric sources. In the case of SO2 the stratospheric flux is identified to be mostly from the Mount Pinatubo eruption. Concentrations in the upper troposphere for species such as CO and hydrocarbons, which are emitted in the continental boundary layer and have a sink in the troposphere, are significantly underestimated by the model. Two factors have been identified to contribute significantly to the underestimate: one is emissions upwind of the model domain (eastern Asia and western Pacific); the other is that vertical transport is underestimated in the model. Model results are also grouped by back trajectories to study the contrast between compositions of marine and continental air masses. The model-calculated altitude profiles of trace species in continental and marine air masses are found to be qualitatively consistent with observations. However, the difference in the median values of trace species between continental air and marine air is about twice as large for the observed values as for model results. This suggests that the model underestimates the outflow fluxes of trace species from the Asian continent and the Pacific rim countries to the ocean. Observed altitude profiles for species like CO and hydrocarbons show a negative gradient in continental air and a positive gradient in marine air. A mechanism which may be responsible for the altitude gradients is proposed
Recommended from our members
ATMOSPHERIC CHEMISTRY IN THE ARCTIC AND SUB-ARCTIC - INFLUENCE OF NATURAL FIRES, INDUSTRIAL EMISSIONS, AND STRATOSPHERIC INPUTS
Recommended from our members
The effects of high strain-rate and in-plane restraint on quasi-statically loaded laminated glass: a theoretical study with applications to blast enhancement
AbstractLaminated glass panels are increasingly used to improve the blast resilience of glazed facades, as part of efforts to mitigate the threat posed to buildings and their occupants by terrorist attacks. The blast response of these ductile panels is still only partially understood, with an evident knowledge gap between fundamental behaviour at the material level and observations from full-scale blast tests. To enhance our understanding, and help bridge this gap, this paper adopts a ‘first principles’ approach to investigate the effects of high strain-rate, associated with blast loading, and the in-plane restraint offered by blast-resistant frames. These are studied by developing simplified analytical beam models, for all stages of deformation, that account for the enhanced properties of both the glass and the interlayer at high strain-rates. The increased shear modulus of the interlayer results in a composite bending response of the un-fractured laminated glass. This also enhances the residual post-fracture bending moment capacity, arising from the combined action of the glass fragments in compression and the interlayer in tension, which is considered negligible under low strain-rates. The post-fracture resistance is significantly improved by the introduction of in-plane restraint, due to the membrane action associated with panel stretching under large deflections. This is demonstrated by developing a yield condition that accounts for the relative contributions of bending and membrane action, and applying the upper bound theorem of plasticity, assuming a tearing failure of the interlayer. Future work aims to complete the theoretical framework by including the assessment of plate-action and inertia effects.</jats:p
High strain-rate effects from blast loads on laminated glass: An experimental investigation of the post-fracture bending moment capacity based on time–temperature mapping of interlayer yield stress
To enhance the resilience of buildings, laminated glass panels are increasingly used in glazed façades. These ductile panels provide a superior blast resistance to that provided by monolithic glass panels, due to the improved residual capacity offered by the polymer interlayer following the fracture of the glass layers. The complex interaction between the attached glass fragments and the interlayer is still only partially understood. To help address this, this paper investigates experimentally the post-fracture bending moment capacity of laminated glass. Three-point bending tests are performed at low temperature on specimens pre-fractured before testing, to ensure controlled and repeatable fracture patterns. The low temperature simulates the effects of the high strain-rates that result from short-duration blast loads by taking advantage of the time-temperature dependency of the viscoelastic interlayer. In these experiments, polyvinyl butyral is considered as the interlayer, this being the most common interlayer for laminated glass used in building facades. A new time-temperature mapping equation is derived from experimental results available in the literature, to relate the temperatures and strain-rates that result in the same interlayer yield stress. The results of the low-temperature tests demonstrate an enhancement of the ultimate load capacity of the fractured glass by two orders of magnitude, compared to that at room temperature. This suggests an improved post-fracture bending moment capacity associated with the now stiffer interlayer working in tension and the glass fragments working in compression. Due to the time-temperature dependency of the interlayer, a similar enhancement is therefore anticipated at the high strain-rates associated with typical blast loading. Finally, the assumed composite bending action is further supported by the results from additional specimens with thicker PVB and glass layers, which result in enhanced capacity consistent with the bending theory of existing analytical models.EPSRC Grant Reference No. EP/L016095/1 and ICE Research and Development Enabling Fun
Characteristics of outdoor falls among older people: A qualitative study
Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people
- …
