1,575 research outputs found

    Adaptive reference model predictive control for power electronics

    Get PDF
    An adaptive reference model predictive control (ARMPC) approach is proposed as an alternative means of controlling power converters in response to the issue of steady-state residual errors presented in power converters under the conventional model predictive control (MPC). Differing from other methods of eliminating steady-state errors of MPC based control, such as MPC with integrator, the proposed ARMPC is designed to track the so-called virtual references instead of the actual references. Subsequently, additional tuning is not required for different operating conditions. In this paper, ARMPC is applied to a single-phase full-bridge voltage source inverter (VSI). It is experimentally validated that ARMPC exhibits strength in substantially eliminating the residual errors in environment of model mismatch, load change, and input voltage change, which would otherwise be present under MPC control. Moreover, it is experimentally demonstrated that the proposed ARMPC shows a consistent erasion of steady-state errors, while the MPC with integrator performs inconsistently for different cases of model mismatch after a fixed tuning of the weighting factor

    Morphing Switched-Capacitor Converters with Variable Conversion Ratio

    Get PDF
    High-voltage-gain and wide-input-range dc-dc converters are widely used in various electronics and industrial products such as portable devices, telecommunication, automotive, and aerospace systems. The two-stage converter is a widely adopted architecture for such applications, and it is proven to have a higher efficiency as compared with that of the single-stage converter. This paper presents a modular-cell-based morphing switched-capacitor (SC) converter for application as a front-end converter of the two-stage converter. The conversion ratio of this converter is flexible and variable and can be freely extended by increasing more SC modules. The varying conversion ratio is achieved through the morphing of the converter's structure corresponding to the amplitude of the input voltage. This converter is light and compact, and is highly efficient over a very wide range of input voltage and load conditions. Experimental work on a 25-W, 6-30-V input, 3.5-8.5-V output prototype, is performed. For a single SC module, the efficiency over the entire input voltage range is higher than 98%. Applied into the two-stage converter, the overall efficiency achievable over the entire operating range is 80% including the driver's loss

    Integration of an Active Filter and a Single-Phase AC/DC Converter with Reduced Capacitance Requirement and Component Count

    Get PDF
    Existing methods of incorporating an active filter into an AC/DC converter for eliminating electrolytic capacitors usually require extra power switches. This inevitably leads to an increased system cost and degraded energy efficiency. In this paper, a concept of active-filter integration for single-phase AC/DC converters is reported. The resultant converters can provide simultaneous functions of power factor correction, DC voltage regulation, and active power decoupling for mitigating the low-frequency DC voltage ripple, without an electrolytic capacitor and extra power switch. To complement the operation, two closed-loop voltage-ripple-based reference generation methods are developed for controlling the energy storage components to achieve active power decoupling. Both simulation and experiment have confirmed the eligibility of the proposed concept and control methods in a 210-W rectification system comprising an H-bridge converter with a half-bridge active filter. Interestingly, the end converters (Type I and Type II) can be readily available using a conventional H-bridge converter with minor hardware modification. A stable DC output with merely 1.1% ripple is realized with two 50-μF film capacitors. For the same ripple performance, a 900-μF capacitor is required in conventional converters without an active filter. Moreover, it is found out that the active-filter integration concept might even improve the efficiency performance of the end converters as compared with the original AC/DC converter without integration

    Chromatic, Photometric and Thermal Modeling of LED Systems with Nonidentical LED Devices

    Get PDF
    published_or_final_versio

    General Steady-State Analysis and Control Principle of Electric Springs With Active and Reactive Power Compensations

    Get PDF
    published_or_final_versio

    Analysis and Modeling of High-Power Phosphor-Coated White Light-Emitting Diodes With a Large Surface Area

    Get PDF
    published_or_final_versio

    Color variation reduction of gan-based white light-emitting diodes via peak-wavelength stabilization

    Get PDF
    published_or_final_versio

    Nonlinear Dimming and Correlated Color Temperture Control of Bi-Color White LED Systems

    Get PDF
    This paper proposes a nonlinear approach of controlling the luminous intensity and correlated color temperature (CCT) of white light-emitting diode (LED) systems with dual color temperatures. This LED system is made up of a warm color LED source (2700 K) and a cool color LED source (5000 K). The luminous intensity of each of these LED sources is individually controlled by pulsewidth modulation. The overall intensity of the LED system is due to the combined emitted flux of both LED sources. Its overall CCT is the mixed average CCT of both LED sources. This proposed method is based on the nonlinear empirical luminous and CCT models of the LEDs, which take into consideration the thermal effect of LEDs on its luminance and CCT properties. With reasonable approximation, the theoretical models are simplified into practical solutions, which are translatable into real-life applications. It is experimentally validated that the proposed approach is considerably more accurate than existing linear approaches that do not consider color variations of LED sources. The idea is applicable to LED systems with multiple color temperatures and is not limited to white LEDs.published_or_final_versio

    Direct AC/DC rectifier with mitigated low-frequency ripple through waveform control

    Get PDF
    In a rectification system with unity power factor, the input power consists of a DC and a double-line frequency power component. Traditionally, an electrolytic capacitor (E-Cap) is used to buffer the double-line frequency power such that the DC output presents a small voltage ripple. The use of E-Cap significantly limits the lifetime of the rectifier system. In this paper, a differential AC/DC rectifier based on the use of an inductor-current waveform control methodology is proposed. The proposed configuration achieves single-stage direct AC/DC rectification without the needs of a front-stage diode rectifier circuit, an input EMI filter, and an E-Cap for buffering the double-line frequency power. The feasibility of the proposal has been practically confirmed in an experimental prototype. © IEEE.published_or_final_versio

    Power Flow Analysis and Critical Design Issues of Retrofit Light-Emitting Diode (LED) Light Bulb

    Get PDF
    published_or_final_versio
    • …
    corecore