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Analysis and Modeling of High-Power
Phosphor-Coated White Light-Emitting

Diodes With a Large Surface Area
Huan Ting Chen, Member, IEEE, Siew-Chong Tan, Senior Member, IEEE, and S.Y. R. Hui, Fellow, IEEE

Abstract—Modern high-power white light-emitting diodes
(LEDs) composed of multiple blue LED chips and yellow phosphor
coatings have been successfully commercialized because of their
high-luminous efficacy. The multiple-chip LED packages usually
come with flat structures that have large surface areas for consid-
erable heat loss. Starting from the analysis and modeling of the
blue LED chip, this paper introduces the thermal path through the
phosphor layer to form the white phosphor-coated (PC) white LED
device model for photometric, electric, and thermal performance
analysis. The power distribution of the blue LED chip and that of
the PC white LED device are compared. Based on this new analysis,
the increase in the heat dissipation coefficient, equivalent thermal
resistance, and power loss caused by the phosphor coating can
be quantified. New equations suitable for device manufacturers to
qualify their devices and design engineers to optimize LED system
designs are derived. The analytical results are in good agreement
with the practical mesurements.

Index Terms—Light-emitting diodes, phosphor-coated white
LEDs, photo-electro-thermal theory, thermal model.

I. INTRODUCTION

THE combined use of yellow YAG:Ce phosphor and blue
LED chip generates white light by mixing the two com-

plementary colors. Such a combination has been the most com-
mon practice in modern high-power white LED packages. Usu-
ally, the phosphor layer is distributed uniformly on the surface
of the blue LED chip. However, photons could be trapped inside
the LED packages, especially if the packages are high power
and compact. Therefore, more understanding is needed on the
effects of the phosphor coating on the photometric, electric, and
thermal performance of the white LED device.

In the phosphor layer, a fraction of the blue light under-
goes the Stokes shift and the wavelength of the radiated light
will slightly increase. Heat will be generated due to Stokes
shift and light absorption [1], which can increase not only the
chip junction temperature, but also the phosphor temperature.
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Fig. 1. Photographs of two LED samples. (a) Blue LED (without yellow
phosphor coating) and (b) PC white LED (with yellow phosphor coating intact).

Temperature is a key parameter affecting the lifetime [2]–[7],
luminous efficacy [8]–[11], and color of the LED device and sys-
tem [12]–[15]. For compact LED systems with devices closely
packed together, improper device geometric arrangements on
the heat sink and uneven heat distribution among LED devices
can degrade both the LED device and the system’s performance
[2]. High temperature in the phosphor layer can result in the
significant reduction of the phosphor emission caused by the
thermal quenching effect [3]. Therefore, there is a challenge to
determine how much heat is generated by the phosphor layer
and to quantify the luminous flux reduction when designing the
white LED devices and systems.

In this paper, two high-power LED samples of the same model
and same batch are used for the investigation. Each LED sample
composes of multiple blue LED chips and a yellow phosphor
coating (under a transparent silicone cover). The first sample
shown in Fig. 1(a) has the transparent silicone cover with the
phosphor coating removed so that it is used as a blue LED for
comparison. It is termed as “blue LED” in this paper. The sec-
ond LED sample has the phosphor coating intact as shown in
Fig. 1(b) and is termed as “PC white LED.” It is important to
note that such flat LED package design has a relatively large
surface area for the heat flow as compared to that of a single
chip package. In this paper, the heat flow through the phosphor
coating and the silicone cover is analyzed and included in the
model. The effects of the phosphor coating and the silicone
cover on the photometric, electric, and thermal performance of
the white LED package are studied and quantified. The heat-
ing power generated in the phoshpor layer and the luminous
flux of the phosphor-coated (PC) white LED are evaluated theo-
retically and experimentally. Based on the photoelectrothermal
theory and the use of the phosphor characteristics (absorption
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coefficient of blue light of the phosphor layer, conversion coeffi-
cient of blue light converting into yellow light, and the phosphor
thickness), the increase in the heat dissipation coefficient, the
equivalent thermal resistance, and the power loss of the package
arising from the phosphor material can be accurately quantified.

II. ELECTRICAL, THERMAL, AND PHOTOMETRIC MODELING

OF BLUE LED AND PC WHITE LED

A. Electrical Diode Model Equations

The common electrical model for an LED consists of an ideal
diode and a series resistance. The voltage VD across the ideal
diode can be expressed in terms of the total voltage drop V
across the series combination of the ideal diode and the series
resistance Rs . Thus, VD = V − IRs , and its current–voltage
(I–V) characteristic is given by

I = C exp
[
− Eg

nkTj

]
exp

[
q (V − IRs)

nkTj

]
(1)

where I is the forward current of the LED, C is the device
parameter, q is the magnitude of an electronic charge, k is the
Boltzmann constant, Tj is the junction temperature, n is the
ideality factor, and Eg is the bandgap energy.

The diode voltage equation is

V = IRs +
Eg

q
+

nkTj

q
ln

(
I

C

)
. (2)

From (1) and (2), the diode power equation is, therefore

Pd = I2Rs + I

[
Eg

q
+

nkTj

q
ln

(
I

C

)]
. (3)

For (1)–(3), it is essential to determine the parameters such as
Eg , n, and C. Using a Keithley 2400 SourceMeter in a four-wire
setup, the current–voltage curve of an LED can be measured
by placing the LED in a temperature-controlled oven under
pulsed current injection with a small duty cycle. In this way,
the self-heating of the p-n junction is negligible and, therefore,
the junction temperature will be almost the same as the ambient
temperature. The measured current–voltage curves for blue and
PC white LED are shown in Figs. 2 and 3, respectively. Based on
the measured results, the voltage equation in term of the current
can be derived in the form of (2) by using piecewise linear
iteration fitting (such as origin software) or genetic algorithm
(such as MATLAB software). The physical device parameters
in equation (2) should be automatically searched in a space
of potential solutions through piecewise linear iteration fitting
or genetic algorithm such that they finally reach an optimal
set of solutions, which matches them to the measured curve,
as depicted in Figs. 2 and 3. From these practically measured
voltage equations, the device parameters (Eg , n, and C) of the
LED can be extracted.

B. Bidirectional Thermal Resistance Model for Flat LEDs
With a Large Surface Area

For a flat LED package with a relatively large surface area,
the heat flow from the device junction to the ambient through
the phosphor coating and silicone cover cannot be ignored [19].

Fig. 2. Measured current versus voltage of the blue LED.

Fig. 3. Measured current versus voltage of the PC white LED.

This means that the bidirectional heat flow on both sides of the
flat LED package should be considered. In fact, it will be shown
that if such bidirectional heat flow is included, the theoretical
prediction of the junction temperature and, thus, the luminous
output would be much more accurate. For the samples shown
in Fig. 1, two heat flow paths can be considered. First, the heat
flow from the junction to the heat sink and then heat sink to
the ambient can be, respectively, represented by the junction-to-
case thermal resistance Rjc and the heat sink thermal resistance
Rhs , which are shown in Fig. 4. Second, the heat flow from the
junction to the phosphor coating and the silicone cover should
be included. For the blue LED, which has the phosphor coating
removed, a thermal resistance Rsilicone as shown in Fig. 4(a)
can be used to represent such a heat flow path. For the PC
white LED, such a path is represented by the thermal resistance
Rsilicone in series with the thermal resistance of the phosphor
coating Rphosphor as shown in Fig. 4(b). The model in Fig. 4(b)
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Fig. 4. Bidirectional thermal resistance network of the LED device. (a) Blue
LED and (b) PC white LED.

will be used to demonstrate the heat trapping effects of the
encapsulation layers in the flat LED package.

Several assumptions were made for the thermal model:
1) perfect contact exists at interfaces between different layers;
2) heat is conducted along the vertical direction in each layer in
the thermal model; 3) the spreading resistance among the LED
chips is neglected; and 4) thermal radiation is neglected. Based
on the above assumptions, the equivalent thermal resistance for
blue LED (Rjc,b ) and PC white LED (Rjc,w ) can be expressed
as

Rjc,b =
1

1
R s i l i c o n e

+ 1
R j c +Rh s

. (4)

Rjc,w =
1

1
Rp h o s p h o r +R s i l i c o n e

+ 1
R j c +Rh s

. (5)

In order to determine the equivalent thermal resistance (Rjc)
of the LED chips in the package, a third LED sample without
the phosphor coating and the silicone cover is tested. For a blue
LED without the silicone cover, the thermal resistance can be
expressed as

Rjc,b ′ =
1

1
Ra i r

+ 1
R j c

≈ Rjc (6)

where Rair is the thermal resistance of air, which is very large
as compared with other thermal resistance.

Using the transient thermal tester (T3Ster) LED measure-
ment system, the thermal resistance values of the LED samples
1) without phosphor coating and silicone cover, 2) with silicone
cover but without phosphor coating, and 3) with both phosphor
coating and silicone cover are measured. The total equivalent
thermal resistance for the three samples 1) blue LED without
silicone cover R ′

jc,b , 2) blue LED with silicone cover Rjc,b , and
3) PC white LED Rjc,w are recorded in Fig. 5. It is noted that
Rjc,b is smaller than Rjc ,w because there is no phosphor coating
that generates and traps heat when the diode is in operation. In
addition, Rjc,b is smaller than R ′

jc,b because the total heat loss
surface area of the LED chips is much smaller than that of the
silicone cover. Based on the thermal equivalent circuits in Fig. 4
and (4)–(6), it can be found that Rsilicone is about 21.3 °C/W
and Rphosphor is about 16.8 °C/W.

Fig. 5. Thermal resistance and capacitance of the three samples (blue LED
without silicone package, blue LED with silicone package, and PC white LED).

C. Electrothermal Model Equations for the Blue LED
and the PC LED

Based on the bidirectional thermal resistance network de-
scribed above, the thermal model for the LED can be expressed
as

Pheat =
Tj − Ta

Rup
+

Tj − Ta

Rdown
(7)

where Rup refers to the total thermal resistance in the heat flow
path from the junction through the surface of the LED package
to the ambient, and Rdown refers to the total thermal resistance
from the junction through the heat sink to the ambient. Based on
(4) and (5), the junction temperature Tj,b and Tj,w for the blue
LED and PC white LED mounted on a heat sink with a thermal
resistance Rhs can be rewritten as

Tj,b = Ta + Rjc,bPh,b

= Ta +
(

1
1/Rsilicone + 1/(Rjc + Rhs)

)
kh,bIV (8)

Tj,w = Ta + Rjc,w Ph,w

= Ta +
(

1
1/(Rsilicone + Rphosphor) + 1/(Rjc + Rhs)

)

× kh,w IV. (9)

Putting (2) into (8) and (9), Tj,b and Tj,w can be obtained as

Tj,b = Ta + Rjc,bkh,bI

[
IRs +

Eg

q
+

nkTj,b

q
ln

(
I

C

)]

=
Ta + kh,b

(
1

1/R s i l i c o n e +1/(R j c +Rh s )

)(
I2Rs + I

Eg

q

)

1 − kh,b

(
1

1/R s i l i c o n e +1/(R j c +Rh s )

)
nk
q I ln

(
I
C

)
(10)
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Fig. 6. Energy flow illustration in LED package of a (a) blue LED and a (b)
PC white LED.

Tj,w = Ta + Rjc,w kh,w I

[
IRs +

Eg

q
+

nkTj,w

q
ln

(
I

C

)]

=
Ta +kh,w

(
1

1/(R s i l i c o n e +Rp h o s p h o r )+1/(R j c +Rh s )

)(
I2Rs +I

Eg

q

)

1−kh,w

(
1

1/(R s i l i c o n e +Rp h o s p h o r )+1/(R j c +Rh s )

)
nk
q I ln

(
I
C

) .

(11)

Several important observations should be noted from (10)
and (11).

1) Equations (10) and (11) relate the junction temperature
(Tj,b or Tj,w ) to the forward current I, the thermal re-
sistance of the heat sink Rhs , the LED device (Rjc,b or
Rjc,w ), the device package (Rsilicone and/or Rphosphor),
and other physical parameters of the device (such as band
gap energy Eg , series resistance Rs , and the ideality factor
n) altogether. It is an equation that integrates the thermal,
electrical, and physical characteristics of the LED system
altogether.

2) For a given thermal design with a given set of Rhs and
Rjc,b or Rjc,w , the junction temperature Tj,b or Tj,w is de-
pendent on the physical parameters such as the bandgap
energy Eg , the series resistance Rs , and the ideality
factor n.

3) The ideality factor n is related to the carrier transport,
recombination, and resistivity. It has been commonly used
as an indicator for device performance. A high ideality
factor results in a high junction temperature and, thus,
limits the power efficiency.

4) It has been suggested that ideality factor of a diode is de-
pendent on the trap-assisted tunneling and carrier leakage.
However, no quantitative modeling has been previously
reported to relate the junction temperature to the high ide-
ality factor in LEDs. Therefore, (10) and (11) provides a
new formulation linking the junction temperature to the
ideality factor.

5) As the ideality factor is associated with a negative term in
the denominator of (10) and (11), a large ideality factor
will lead to a small value in the denominator, which in turn
will result in a higher junction temperature. Therefore, this
new equation quantitatively sums up the relationship of
junction temperature and ideality factor.

The LED power will be turned into heat (-heat dissipation
power Pheat) and light (-optical power Popt). Fig. 6(a) and (b)

show the power flow structures of the blue LED and the PC
white LED, respectively. The power flow structure of the PC
white LED is more complicated than that of the blue LED due
to the presence of the phosphor coating. In order to evaluate
the effects of the phosphor coating, the power of the blue LED
and the PC white LED are set to be identical in the analysis.
Therefore

Pd,w = Pd,b (12)

where Pd,w and Pd,b are the total electrical LED power of the
PC white LED and the blue LED, respectively.

For the blue LED, the heat dissipation coefficient kh,b can be
expressed as

kh,b =
Pheat,b

Pd,w
= 1 − Popt,b

Pd,w
. (13)

For the PC white LED, heat dissipation occurs in both the blue
LED and the phosphor coating. Therefore, the heat dissipation
coefficient kh,w of the PC white LED is

kh,w =
Pheat,w

Pd,w
=

Pheat,b

Pd,w
+

Pheat,p

Pd,w
= 1 − Popt,w

Pd,w

=
(

1 − Popt,b

Pd,w

)
+

(
Popt,b − Popt,b(w ) − Popt,p(w )

Pd,w

)

(14)

where Popt,b is the optical power for the blue LED, Popt,b(w )
is the optical power for the blue light of the PC white LED,
Popt,p(w ) is the optical power for the phosphor light of the PC
white LED, Popt,w is the optical power for the PC white LED,
Pheat,b is the heat dissipation in the blue LED chip, and Pheat,p
is the heat dissipation in the phosphor layer.

Some energy of the blue light emitted from the blue LED chip
is consumed in the phosphor layer, where light scattering, con-
version, and absorption occur simultaneously. Therefore, the
emitted light of the blue LED chip can be divided into two
parts. Part of blue light absorbed by the phosphor layer is con-
verted into yellow light, part of blue light is emitted through
the optical cover of the PC white LED package, and the rest is
converted into heat. The energy of the converted yellow light
dissipates during its propagation in the phosphor layer follows
the Lamber–Beer’s law [4]. The optical power of generated yel-
low light within phosphor can propagate in the z-direction or in
its opposing direction z [1]. Popt,p(w ) represents the power of
the yellow light in the z-direction (light emitting outside pack-
age), and Popt,p(w )− represents the opposite direction, as shown
in Fig. 7. If Δz is close to zero, based on energy balance across
the phosphor, the power gradient [17] of the yellow light in the
phosphor layer can be expressed as

dPopt,p(w )−
dz

= αP × Popt,p(w )− − 1
2
β × Popt,b(w ) (15)

dPopt,p(w )

dz
= −αP × Popt,p(w ) +

1
2
β × Popt,b(w ) (16)
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Fig. 7. Optical transfer in the phosphor and blue LED chip layer.

and the power gradient for the blue light in phosphor layer is

dPopt,b(w )

dz
= −αB × Popt,b(w ) (17)

where αP is a coefficient of yellow light absorption in the sil-
icone cover, αB is a coefficient of blue light absorption in the
phosphor layer, β is a conversion coefficient for blue light con-
verting to yellow light through the phosphor layer, and z is the
displacement in the z-direction. Popt,p(w ) is the optical power
of the yellow light of the PC white LED in the z-direction. It
represents the light power emitting out of the PC white LED
package.

The optical power of blue light at z = 0 is Popt,b , the optical
power of blue light at z = h (where h is the thickness of phosphor
layer) is Popt,b(w ) , and the optical power of phosphor light at
z = 0 is zero. Blue light and yellow light are slightly absorbed by
silicone, due to the high transmittance of silicone encapsulating
[8]. It is assumed that the yellow light absorbed by silicone
αP and the light scattered back by the phosphor particles is
negligible [17]. According to the boundary conditions, the above
equations can be rewritten as

Popt,b(w ) = Popt,b × e−αB h (18)

Popt,p(w ) =
β × Popt,b

2αB

(
1 − e−αB h

)
. (19)

So, the heating power generated by the phosphor Pheat,p can
be given as

Pheat,p

Pd,w
=

(
Popt,b − Popt,b(w ) − Popt,p(w )

Pd,w

)

=
(

Popt,b − Popt,b(w ) − Popt,p(w )

Popt,b

)
Popt,b

Pd,w

=
(

1 −
Popt,b(w )

Popt,b
−

Popt,p(w )

Popt,b

)
(1 − kh,b)

=
[
1 − β

2αB
− e−αB h

(
1 − β

2αB

)]
(1 − kh,b) .

(20)

Then, kh of the white LED in (20) can be obtained as

kh,w =
[
2 − β

2αB
− e−αB h

(
1 − β

2αB

)]
(1 − kh,b) . (21)

Based on (21), several important points should be noted.
1) The heat dissipation coefficient of the PC white LED kh,w

is related to the heat dissipation coefficient of the blue chip
kh,b , the absorption coefficient of blue light on the phos-
phor layer αB , the conversion coefficient of blue light con-
verting into yellow light β, and the phosphor thickness h.

2) LED device manufacturers can use parameters such as αB ,
β, and h in (21) to quantify their PC white LED devices
and estimate the heat generated by the phosphor layer. By
minimizing the second term on the right-hand side of (21),
the power loss and temperature in the phosphor layer can
be reduced, leading to an improvement in reliability and
efficiency of future PC white LEDs.

3) For a given phosphor material, the heating power gener-
ated by the phosphor layer is dependent on the phosphor
thickness. A thicker phosphor layer leads to more photon
energy absorption and heat dissipation in the phosphor
layer. However, such phosphor layer cannot be too thin;
otherwise, most of the blue light will escape through the
layer without conversion to yellow light. Further study is
needed to optimize such thickness.

D. Photoelectrothermal Model Based
on Multiphysical Properties

Based on the original PET theory [9], [10], the luminous flux
φv of N LED devices is

φv = NEPd = NE0
{

[1 + ke (Ta − T0)] Pd

+kekh (Rjc + NRhs) P 2
d

}
. (22)

In general, the luminous flux can be expressed in the general
form of φv = α1Pd–α2P

2
d , where α1 and α2 are two positive

system coefficients. It should be noted that the LED power Pd is
used in the luminous flux equation because it includes the effects
of both of the junction temperature and the LED current [18].
These two coefficients are not necessarily constant throughout
the operating power range. The coefficient α2 usually increases
with increasing Pd , so that the luminous flux equation is an
asymmetric parabolic function of the LED power.

According to [10], where luminous efficacy E with junction
temperature and electrical power can be expressed as

E = E0 [1 + ke(Tj − T0)] = E0 [1 + ke(Ta − T0)

+ kekh(Rjc + NRhs)Pd ]

= E0 [1 + ke(Ta − T0) + ke(1 − ηw )(Rjc + NRhs)Pd ]

= E0
{
1 + ke(Ta − T0)

+ ke

[
1 −

(αTj + β)
(
χP 2

d + δPd + γ
)

μ

]

× (Rjc + NRhs)Pd

}
. (23)
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In order to simplify above expression, the wall-plug efficiency
ηw with electrical power Pd can be expressed as first-order
regression

E = E0{1 + ke (Ta − T0 ) + ke [1 − μ′ (α′Tj + β ′) (δ′Pd + γ ′)]

× (Rjc + NRhs )Pd} (24)

where α′, β′, δ′, γ′, and μ′ are calibrated coefficients for ηw with
electrical power and the junction temperature. Therefore, (23)
can be rewritten as

E = E0{1 + ke(Ta − T0) + ke(Rjc + NRhs)Pd

− ke(Rjc + NRhs)
(
δ′P 2

d + γ′Pd

)
μ′ (α′Tj + β′)}. (25)

Based on (25), several important points should be noted
1) The luminous efficacy E is related to the electrical power

Pd , the junction temperature Tj , thermal resistance of de-
vice Rjc , thermal resistance of heat sink Rhs , the LED
device number N, and the coefficients α′, β′, δ′, γ′,
and μ′.

2) It is noted that the coefficients α′, β′, δ′, and γ′ can be
extracted from a series measurement of ηw with junction
temperature and electrical power [10]. The coefficients
α′and δ′ are both negative.

3) For a given thermal design with a given set of Rhs and
Rjc , the luminous efficacy E is dependent on the electrical
power Pd . In general, E decreases with increasing power
Pd and the relationship is close to but not exactly a straight
line, as will be shown in Fig. 12(a) and 13(a).

4) If space for the heat sink is not an issue, a big heat sink with
low Rhs should always be selected for the LED system in
order to effectively reduce the reduction of the luminous
efficacy E at higher temperature.

5) The slope value of luminous efficacy E versus junc-
tion temperature Tj is dependent on the coefficient
of −ke(Rjc + NRhs)

(
δ′P 2

d + γ′Pd

)
μ′α′. The factor

(Rjc + NRhs) decreases with Rhs , and the factor (δ′P 2
d +

γ′Pd) increases initially with Pd , and then reduce signif-
icantly with increasing Pd due to negative value of δ′.
Therefore, the slope of E–Tj depends on the heat sink’s
thermal resistance.

The electrical power expressed in (3) with the multiphysi-
cal characteristics (Eg , n,Rs, and C) can be used with (22) to
determine the total luminous output, which is given as

φv = NEPd

= NE0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1 + ke (Ta − T0)]
×

(
I2Rs + I

Eg

q + I
nkTj

q ln
(

I
C

))
+kekh (Rjc + NRhs)

×
(
I2Rs + I

Eg

q + I
nkTj

q ln
(

I
C

))2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(26)

Equation (26) relates the luminous flux φv to the current I, the
thermal resistance of heat sink Rhs , the LED Rjc , the junction
temperature of LED Tj , and other physical parameters of LED
(Eg , n,Rs, and C) altogether. It is important to note that the

junction temperature of the blue and PC white LEDs can also
be, respectively, replaced by the thermal models in (8) and (9).

Based on (4) and (5), the PET theory for the N blue LEDs can
be developed as

φv,b = NEPd,b

=NE0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1+ ke (Ta −T0)]
(
I2Rs + I

Eg

q + I
nkTj , b

q ln
(

I
C

))

+ kekh,b

(
1

N/R s i l i c o n e +1/(N/R j c +N Rh s )

)

×
(
I2Rs + I

Eg

q + I
nkTj , b

q ln
(

I
C

))2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(27)

Putting (16) into (18), the PET theory for the N PC white
LED can be expressed as

φv,w = NEPd,w

= NE0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1+ ke (Ta −T0)]
(
I2Rs + I

Eg

q + I
nkTj , w

q ln
(

I
C

))

+ ke

(
kh,b +

[
1 − β

2αB
− e−αB h

(
1 + β

2αB
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(28)

Several important observations can be made from (28)
1) Equation (28) not only relates the luminous flux φv,w to

the injection current of the PC white LED I, the thermal
resistance of the heat sink Rhs , the device Rjc , and the
package Rsilicone/Rphosphor , but it also includes the mul-
tiphysical characteristics of the device (Eg , n,Rs, and C)
and the phosphor characteristics (αB , β, and h). It is a
model that integrates the photometric, electrical, ther-
mal, and physical aspects of the PC white LED system
altogether.

2) As ke is negative and less than 1, when the diode current
is increased from zero, the luminous flux is increased
quasi-linearly in the low-current region and after reaching
the maximum point at current I∗, the luminous flux will
decrease as current increases according to the LED system
behavior. If the heat dissipation coefficient is increased by
the inclusion of the phosphor materials or its fabricated
process for the PC white LED, the second item will be
increased, and I∗ will shift to a lower value. This leads to
the possibility that I∗ may occur at a current level lower
than the rated current of the LED.

3) For a given thermal design and set of Rhs and Rjc,w , one
should expect that I∗ could be shifted to a higher current
level if there is a reduction in photon energy absorption
occurring inside the phosphor layer (i.e., enhancement on
the conversion coefficient of blue light converting into yel-
low light, reduction in phosphor thickness, and absorption
coefficient).
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Fig. 8. Calculated and measured junction temperature versus injection current of the blue LED mounted on three different heat sinks.
(a) "unidirectional" thermal model (b) "bidirectional" thermal model

III. EXPERIMENTAL VERIFICATION

The blue LED and PC white LEDs shown in Fig. 1 have
been used for practical evaluation. For a fair comparison, the
same input power is used for the blue LED sample and for the
PC white LED (i.e., Pd,b = Pd,w ) as suggested in (12). Each
LED package has 16 chips mounted on the aluminum substrate
with silver paste used for attaching the die. There are four chips
in series connection in a string. Four of these strings are con-
nected in parallel to form the LED. The dimension of each LED
chip is 0.55 mm × 0.96 mm, and the silver film (black area) is
9.83 mm × 11.45 mm. The thickness of the phosphor coating
is 0.5 mm. The optical measurements of the LED samples are
performed under steady-state thermal and electrical conditions
using the PMS-50 spectrophotocolorimeter with an integrating
sphere (measured after 20 minutes of operation at different elec-
trical power levels and at an ambient temperature of 20 °C). The
voltage change of the LED devices with temperature variations
are captured using the T3Ster. Besides the combined thermal
and optical measurements, the temperature dependence of the
optical power and the wall-plug efficiency ηw of the LED are
also recorded. The T3Ster captures the thermal transient re-
sponse in real time, records the cooling/heating curve, and then
evaluates the cooling/heating curves for plotting the thermal
characteristics. The heating current for the samples is 0.4 A and
the heating/cooling time is 20 minutes. The measured current is
5 mA. For voltage-temperature-sensitive parameter calibration,
a small current of 5 mA is applied to a temperature-controlled
heat sink (at different ambient temperature values: 25, 35, 45,
and 55 °C) under a pulsed current injection mode with a small
duty cycle. The thermal resistance of the LED package could be
extracted using the thermal structure function, which is based
on the distribution RC networks [11], [16].

A. Junction Temperature

According to (2) and the measured current–voltage curves
in Figs. 2 and 3, the ideality factor of the blue LED is around
5.68, and that for the white LED is around 5.60. The bidirec-
tional thermal resistance model is compared with the traditional

unidirectional thermal resistance model (i.e., thermal equivalent
circuits in Fig. 4(a) and (b) without the dotted branches). The
LED samples are tested on three different heat sinks. Fig. 8(a)
and (b) shows the theoretical values of the junction tempera-
ture of the blue LED sample based on the unidirectional and
bidirectional models, respectively. The corresponding practical
measurements are also plotted in the figures. While both mod-
els give the correct trend of the characteristics, the bidirectional
thermal model offers a more accurate prediction than the uni-
directional model. Similar sets of junction temperature results
of the PC white LED sample are also used for the comparison
of both the unidirectional and bidirectional models. The results
based on the unidirectional model are shown in Fig. 9(a), while
those based on the bidirectional model are shown in Fig. 9(b). It
can be seen that the bidirectional thermal model, which includes
the heat flow through the surface area of the LED sample, offers
a better prediction than the unidirectional model. For the blue
LED sample mounted on different heat sinks, the average devi-
ation between the unidirectional model and the measurement is
about 13.5% and that between the bidirectional model and the
measurement is 7.9%. For the white LED sample, the average
deviation between the unidirectional model and the measure-
ment is about 11.7% and that between the bidirectional model
and the measurement is 5.2%. Therefore, the results in Figs. 8
and 9 confirm the validity of the bidirectional thermal model.
Theoretical results based on the bidirectional thermal model are
used for discussion hereafter. The peak wavelength of the blue
LED increases from about 451.2 nm at the junction temperature
of 39 °C to about 454.7 nm at junction temperature of 108 °C.
The peak wavelength and correlated color temperature of the
PC white LED increases from about 451.0 nm and 2954 K,
respectively, at the junction temperature of 42 °C to about
455.4 nm and 3136 K, respectively, at the junction temperature
of 127 °C.

B. Heat Dissipation Coefficient kh

The heat dissipation coefficient is a measure of the propor-
tion of the total input power that turns into heat dissipation in
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Fig. 9. Calculated and measured junction temperature versus injection current of the PC white LED mounted on three different heat sinks. (a) "unidirectional"
thermal model (b) "bidirectional" thermal model

TABLE I
LED SYSTEM PARAMETERS

E0 (lm/W) kh (I:0.05A–0.7A) ke (I:0.05A–0.7A) R j c (°C/W) Rh s (°C/W) N T0 (°C) Ta (°C)

Blue LED 18 0.496 to 0.551 −0.0016 to −0.0021 4.03 1.8 to 11.6 1 25 23
PC White LED 126 0.562 to 0.723 −0.0028 to −0.0036 4.45 1.8 to 11.6 1 25 23

Fig. 10. Measured kh versus injection current of the blue and PC white LEDs
with different heat sinks.

the LED. The experimental results of the two LED samples are
plotted in Fig. 10. For the blue LED sample, only a fraction
(34–56%) of the electrical energy input into the blue LED is
converted to heat. But for the PC white LED sample, the heat
dissipation is increased to the range of 59–73%. This increase is
caused by the phosphor coating. As shown in (21), the increase
in heat dissipation for the PC white LED could be caused by
the phosphor characteristics (αB , β, and h). So, it is important

to understand the photon energy loss inside the phosphor layer
so as to predict accurate thermal characteristics of the PC white
LED.

For the PC white LED in the experiment, the thickness h is
around 0.5 mm. The photon absorption coefficient (αB ) by the
phosphor can be calculated based on absorption spectrum pro-
vided by phosphor manufacturers. The calculated result for αB

is around 28.3 cm−1 . The spectral power distribution of the PC
white LED is measured with the integrating sphere system. The
optical power for yellow light of the PC white LED Popt,p(w )
and the optical power for blue light of the blue LED Popt,b can
be determined by integrating the power distribution curve. The
measured results for Popt,p(w ) and Popt,b are about 1.62 and
2.47 W, respectively. Based on (19), the conversion coefficient
(β) for the blue light converting into yellow light is calculated
as 48.7 cm−1 .

Based on known phosphor characteristics (αB , β, and h) and
kh,b of the blue LED, the heat dissipation coefficient of the PC
white LED as a function of current is calculated using (21)
and is plotted in Fig. 11. In general, the calculated results are
consistent with the practical measurements given in Fig. 10.
Relatively large errors occur at the low current range (<0.2 A)
because the relative power measurement errors tend to be large
when the input power is very small. It is noted that the calculated
kh curves tend to be slightly smaller than the measurements. The
reason for this trend is that the simplified phosphor modeling
in (19) ignores the yellow light absorption in silicone layer and
the light scattered back by the phosphor particles. In addition,
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Fig. 11. Calculated kh versus current of the blue and the PC white LED with
different heat sinks.

Fig. 12. (a) Calculated and measured luminous efficacy versus current of the
blue LED on three different heat sinks. (b) Calculated and measured luminous
flux versus current of the blue LED on three different heat sinks.

Fig. 13. (a) Calculated and measured luminous efficacy versus current of
the PC white LED on three different heat sinks. (b) Calculated and measured
luminous flux versus current of the PC white LED on three different heat sinks.

it is assumed that blue light absorption in the phosphor layer is
constant among different wavelengths.

C. Luminous Output

Based on (25), the calculated luminous efficacy curves are
plotted with the measured results in Fig. 12(a) as functions of
the current of the blue LED. The luminous efficacy decreases
with increasing current, and the negative slope of the curve
changes with the heat sink thermal resistance. Based on (27),
the calculated luminous flux curves are plotted along with the
measured flux as functions of the current in Fig. 12(b). The sys-
tem parameters are shown in Table I. Unlike the general trend
that the luminous flux–current curve of a white LED should
follow an asymmetric parabolic curve when the LED current
(and power) increases, the measured luminous flux for the blue
LED is almost linear even with increasing heat sink’s thermal
resistance. The luminous flux of the blue LED is dependent on
the spectral power distribution. The response of human eyes
is represented by the luminosity function. Wavelengths of light
near the peak of the human eye’s response (683 lm/W at 555 nm)
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contribute more strongly to luminous flux than those far away
from the peak. As shown in the insert in Fig. 12(b), the blue color
spectrum exhibits red shift and becomes closer to the maximum
region of human eye’s response curve when the thermal resis-
tance of heat sink increases. This is the reason for the luminous
flux–current curve being fairly linear even with increasing Rhs .
Based on (28), the calculated luminous flux and luminous effi-
cacy curves are plotted along with the measurements in Fig. 13.
The calculated results are in good agreement with the mea-
surements. These results confirm that the bidirectional thermal
model can provide accurate predictions in the framework of the
PET theory.

IV. CONCLUSION

As more modern high-power LED packages are based on the
multiple-chip structures with large surface areas, it is necessary
to include the heat flow path through the top surface of the LED
package. In this paper, a bidirectional thermal resistance model
has been developed to predict the effects caused by the phosphor
coating on the thermal and luminous performance of white LED
devices. The derived bidirectional thermal model given in (5)
leads to a more accurate junction temperature equation (9) for
the PC white LED. Such model equations can be used in the
framework of the PET theory for LED system analysis, which
successfully leads to the quantification of the increase in heat
dissipation coefficient caused by the phosphor coating in (21).
Both the theoretical prediction and practical measurements have
confirmed that the phosphor coating could increase the heat
dissipation coefficient significantly. The proposed model is a
multiphysical one that provides physical insights for researchers
and manufacturers. It can be used for analyzing the performance
of LED structures in the context of a system, incorporating the
interactions of heat, light, and power. The parameters adopted
in the model allow LED manufacturers to use as indicators and
design parameters for the merits of the devices. The analytical
approach also provides application engineers a systematic tool
to accurately predict the luminous performance of LED systems
in the design stage.
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