69 research outputs found

    Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain.

    Get PDF
    © 2015 The Authors.Objective: Although Glucagon-like peptide 1 is a key regulator of energy metabolism and food intake, the precise location of GLP-1 receptors and the physiological relevance of certain populations is debatable. This study investigated the novel GLP-1R-Cre mouse as a functional tool to address this question. Methods: Mice expressing Cre-recombinase under the Glp1r promoter were crossed with either a ROSA26 eYFP or tdRFP reporter strain to identify GLP-1R expressing cells. Patch-clamp recordings were performed on tdRFP-positive neurons in acute coronal brain slices from adult mice and selective targeting of GLP-1R cells in vivo was achieved using viral gene delivery. Results: Large numbers of eYFP or tdRFP immunoreactive cells were found in the circumventricular organs, amygdala, hypothalamic nuclei and the ventrolateral medulla. Smaller numbers were observed in the nucleus of the solitary tract and the thalamic paraventricular nucleus. However, tdRFP positive neurons were also found in areas without preproglucagon-neuronal projections like hippocampus and cortex. GLP-1R cells were not immunoreactive for GFAP or parvalbumin although some were catecholaminergic. GLP-1R expression was confirmed in whole-cell recordings from BNST, hippocampus and PVN, where 100 nM GLP-1 elicited a reversible inward current or depolarisation. Additionally, a unilateral stereotaxic injection of a cre-dependent AAV into the PVN demonstrated that tdRFP-positive cells express cre-recombinase facilitating virally-mediated eYFP expression. Conclusions: This study is a comprehensive description and phenotypic analysis of GLP-1R expression in the mouse CNS. We demonstrate the power of combining the GLP-1R-CRE mouse with a virus to generate a selective molecular handle enabling future in vivo investigation as to their physiological importance

    PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation

    Get PDF
    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation

    Extracellular pH monitoring for use in closed-loop vagus nerve stimulation

    Get PDF
    Objective: Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices

    A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses

    Get PDF
    The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature

    Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model

    Get PDF
    GLP-1 is an intestinal hormone with widespread actions on metabolism. Therapies based on GLP-1 are highly effective because they increase glucose-dependent insulin secretion in people with type 2 diabetes, but many reports suggest that GLP-1 has additional beneficial or, in some cases, potentially dangerous actions on other tissues, including the heart, vasculature, exocrine pancreas, liver, and central nervous system. Identifying which tissues express the GLP-1 receptor (GLP1R) is critical for the development of GLP-1-based therapies. Our objective was to use a method independent of GLP1R antibodies to identify and characterize the targets of GLP-1 in mice. Using newly generated glp1r-Cre mice crossed with fluorescent reporter strains, we show that major sites of glp1r expression include pancreatic β- and δ-cells, vascular smooth muscle, cardiac atrium, gastric antrum/pylorus, enteric neurones, and vagal and dorsal root ganglia. In the central nervous system, glp1r-fluorescent cells were abundant in the area postrema, arcuate nucleus, paraventricular nucleus, and ventromedial hypothalamus. Sporadic glp1r-fluorescent cells were found in pancreatic ducts. No glp1r-fluorescence was observed in ventricular cardiomyocytes. Enteric and vagal neurons positive for glp1r were activated by GLP-1 and may contribute to intestinal and central responses to locally released GLP-1, such as regulation of intestinal secretomotor activity and appetite

    Optical control of insulin release using a photoswitchable sulfonylurea

    Get PDF
    Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM). Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A limitation of these compounds is the elevated risk of developing hypoglycemia and cardiovascular disease, both potentially fatal complications. Here, we describe the design and development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and hormone assays, we further show that JB253 bestows light sensitivity upon rodent and human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release and may offer a valuable research tool for the interrogation of KATP channel function in health and T2DM

    High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Benefits from high-throughput sequencing using 454 pyrosequencing technology may be most apparent for species with high societal or economic value but few genomic resources. Rapid means of gene sequence and SNP discovery using this novel sequencing technology provide a set of baseline tools for genome-level research. However, it is questionable how effective the sequencing of large numbers of short reads for species with essentially no prior gene sequence information will support contig assemblies and sequence annotation.</p> <p>Results</p> <p>With the purpose of generating the first broad survey of gene sequences in <it>Eucalyptus grandis</it>, the most widely planted hardwood tree species, we used 454 technology to sequence and assemble 148 Mbp of expressed sequences (EST). EST sequences were generated from a normalized cDNA pool comprised of multiple tissues and genotypes, promoting discovery of homologues to almost half of <it>Arabidopsis</it> genes, and a comprehensive survey of allelic variation in the transcriptome. By aligning the sequencing reads from multiple genotypes we detected 23,742 SNPs, 83% of which were validated in a sample. Genome-wide nucleotide diversity was estimated for 2,392 contigs using a modified theta (θ) parameter, adapted for measuring genetic diversity from polymorphisms detected by randomly sequencing a multi-genotype cDNA pool. Diversity estimates in non-synonymous nucleotides were on average 4x smaller than in synonymous, suggesting purifying selection. Non-synonymous to synonymous substitutions (Ka/Ks) among 2,001 contigs averaged 0.30 and was skewed to the right, further supporting that most genes are under purifying selection. Comparison of these estimates among contigs identified major functional classes of genes under purifying and diversifying selection in agreement with previous researches.</p> <p>Conclusion</p> <p>In providing an abundance of foundational transcript sequences where limited prior genomic information existed, this work created part of the foundation for the annotation of the <it>E. grandis </it>genome that is being sequenced by the US Department of Energy. In addition we demonstrated that SNPs sampled in large-scale with 454 pyrosequencing can be used to detect evolutionary signatures among genes, providing one of the first genome-wide assessments of nucleotide diversity and Ka/Ks for a non-model plant species.</p

    Kualitas Hidup Pasien Diabetes Melitus Tipe 2 di Puskesmas Se Kota Kupang

    Full text link
    Diabetes Mellitus is well known as a chronic disease which can lead to a decrease in quality of life in all domains. The study aims to explore the diabetic type 2 patient\u27s quality of life and find out the factors affecting in type 2 diabetic mellitus patients. The cross-sectional study design is used that included 65 patient with type 2 diabetes mellitus, in 11 public health centers of Kupang City. Data were collected by using Short Form Survey (SF-36) that assessed 8-scale health profile. Independent sample t-test is used to analyze the correlation between the factors affecting and the quality of life. the study showed that the QoL of DM patients decreased in all 8- health profile including physical functioning, social functioning, mental health, general health, pain, change in the role due to physical problems and emotional problems. The Study also showed there was a relationship between gender, duration of suffering from Diabetes mellitus, and complications to the quality of life. Male perceived a better quality of life than female

    The Great American Crime Decline : Possible Explanations

    Get PDF
    This chapter examines the most important features of the crime decline in the United States during the 1990s-2010s but also takes a broader look at the violence declines of the last three centuries. The author argues that violent and property crime trends might have diverged in the 1990s, with property crimes increasingly happening in the online sphere and thus traditional property crime statistics not being reflective of the full picture. An important distinction is made between ‘contact crimes’ and crimes that do not require a victim and offender to be present in the same physical space. Contrary to the uncertainties engendered by property crime, the declines in violent (‘contact’) crime are rather general, and have been happening not only across all demographic and geographic categories within the United States but also throughout the developed world. An analysis of research literature on crime trends has identified twenty-four different explanations for the crime drop. Each one of them is briefly outlined and examined in terms of conceptual clarity and empirical support. Nine crime decline explanations are highlighted as the most promising ones. The majority of these promising explanations, being relative newcomers in the crime trends literature, have not been subjected to sufficient empirical scrutiny yet, and thus require further research. One potentially fruitful avenue for future studies is to examine the association of the most promising crime decline explanations with improvements in self-control
    corecore