124 research outputs found
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress
Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Kno¨ll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, Sea´na Duggan, Katrin Haupt, Kerstin Hu¨nniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD
The Improving Rural Cancer Outcomes Trial: a cluster-randomised controlled trial of a complex intervention to reduce time to diagnosis in rural cancer patients in Western Australia.
BACKGROUND: Rural Australians have poorer survival for most common cancers, due partially to later diagnosis. Internationally, several initiatives to improve cancer outcomes have focused on earlier presentation to healthcare and timely diagnosis. We aimed to measure the effect of community-based symptom awareness and general practice-based educational interventions on the time to diagnosis in rural patients presenting with breast, prostate, colorectal or lung cancer in Western Australia. METHODS: 2 × 2 factorial cluster randomised controlled trial. Community Intervention: cancer symptom awareness campaign tailored for rural Australians. GP intervention: resource card with symptom risk assessment charts and local cancer referral pathways implemented through multiple academic detailing visits. Trial Area A received the community symptom awareness and Trial Area B acted as the community campaign control region. Within both Trial Areas general practices were randomised to the GP intervention or control. PRIMARY OUTCOME: total diagnostic interval (TDI). RESULTS: 1358 people with incident breast, prostate, colorectal or lung cancer were recruited. There were no significant differences in the median or ln mean TDI at either intervention level (community intervention vs control: median TDI 107.5 vs 92 days; ln mean difference 0.08 95% CI -0.06-0.23 P=0.27; GP intervention vs control: median TDI 97 vs 96.5 days; ln mean difference 0.004 95% CI -0.18-0.19 P=0.99). There were no significant differences in the TDI when analysed by factorial design, tumour group or sub-intervals of the TDI. CONCLUSIONS: This is the largest trial to test the effect of community campaign or GP interventions on timeliness of cancer diagnosis. We found no effect of either intervention. This may reflect limited dose of the interventions, or the limited duration of follow-up. Alternatively, these interventions do not have a measurable effect on time to cancer diagnosis
Effects of DSP4 and methylphenidate on spatial memory performance in rats
In this experiment, we have investigated the spatial memory performance of rats following a central noradrenaline depletion induced by three different doses of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) and following administration of three different doses of methylphenidate (MPH). The rats were required to find food pellets hidden on a holeboard. The sole administration of DSP4 induced only minor cognitive deficits. However, the treatment with MPH increased the reference memory error, the impulsivity and the motor activity of the DSP4-treated rats. Since the noradrenergic terminals in a DSP4-treated rat are significantly reduced, the administration of MPH has little effect on the noradrenergic system and increases dopaminergic rather than noradrenergic activity, resulting in an imbalance with relatively high dopaminergic and low noradrenergic activities. It is suggested that a reduction of noradrenaline and an increase of dopamine induce ADHD-related deficits and that the depletion of noradrenaline is not sufficient for an appropriate rat model of ADHD
The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats
The aim of the present study was to investigate the effect of DSP4-induced noradrenaline depletion on learning and memory in a spatial memory paradigm (holeboard). Since Harro et al. Brain Res 976:209–216 (2003) have demonstrated that short-term effects of DSP4 administration include both noradrenaline depletion and changes in dopamine and its metabolites—with the latter vanishing within 4 weeks after the neurotoxic lesion—the behavioural effects observed immediately after DSP4 administration cannot solely be related to noradrenaline. In the present study, spatial learning, reference memory and working memory were therefore assessed 5–10 weeks after DSP4 administration. Our results suggest that the administration of DSP4 did not lead to changes in spatial learning and memory when behavioural assessment was performed after a minimum of 5 weeks following DSP4. This lack of changes in spatial behaviour suggests that the role of noradrenaline regarding these functions may be limited. Future studies will therefore have to take into account the time-course of neurotransmitter alterations and behavioural changes following DSP4 administration
Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice
Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS
Effects of methylphenidate on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)
The aim of this study was to assess the effects of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on attention in rats as measured using the 5-choice-serial-reaction-time task (5CSRTT) and to investigate whether methylphenidate has effects on DSP4-treated rats. Methylphenidate is a noradrenaline and dopamine reuptake inhibitor and commonly used in the pharmacological treatment of individuals with attention deficit/hyperactivity disorder (ADHD). Wistar rats were trained in the 5CSRTT and treated with one of three doses of DSP4 or saline. Following the DSP4 treatment rats were injected with three doses of methylphenidate or saline and again tested in the 5CSRTT. The treatment with DSP4 caused a significant decline of performance in the number of correct responses and a decrease in response accuracy. A reduction in activity could also be observed. Whether or not the cognitive impairments are due to attention deficits or changes in explorative behaviour or activity remains to be investigated. The treatment with methylphenidate had no beneficial effect on the rats’ performance regardless of the DSP4 treatment. In the group without DSP4 treatment, methylphenidate led to a reduction in response accuracy and bidirectional effects in regard to parameters related to attention. These findings support the role of noradrenaline in modulating attention and call for further investigations concerning the effects of methylphenidate on attentional processes in rats
SPARC: a matricellular regulator of tumorigenesis
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature
Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
© 2018. The American Astronomical Society.. New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation
- …
