15 research outputs found

    The future of hybrid imaging—part 1: hybrid imaging technologies and SPECT/CT

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises in three parts the state-of-the-art of dual-technique imaging, with a focus on clinical applications. We will attempt to highlight selected areas of potential improvement of combined imaging technologies and new applications. In this first part, we briefly review the origins of hybrid imaging and comment on the status and future development of single photon emission tomography (SPECT)/computed tomography (CT). In short, we could predict that, within 10 years, we may see all existing dual-technique imaging systems, including SPECT/CT, in clinical routine use worldwide. SPECT/CT, in particular, may evolve into a whole-body imaging technique with supplementary use in dosimetry applications

    Future response of global coastal wetlands to sea-level rise.

    Get PDF
    The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services1-3. These projections do not necessarily take into account all essential geomorphological4-7 and socio-economic system feedbacks8. Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies1-3, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management.Personal research fellowship of Mark Schuerch (Project Number 272052902) and by the Cambridge Coastal Research Unit (Visiting Scholar Programme). Furthermore, this work has partly been supported by the EU research project RISES-AM- (FP7-ENV-693396)

    The Use of Anatomical Information for Molecular Image Reconstruction Algorithms: Attenuation/Scatter Correction, Motion Compensation, and Noise Reduction

    No full text
    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.clos
    corecore