169 research outputs found

    Esophageal cancer presenting with atrial fibrillation: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Atrial fibrillation was previously reported in patients with esophageal cancer as a complication of total esophagectomy or photodynamic therapy. Here, we propose that atrial fibrillation may also be caused by external compression of the left atrium by esophageal cancer.</p> <p>Case presentation</p> <p>We present a 58-year-old man who developed atrial fibrillation with rapid ventricular rate in the emergency room while being evaluated for dysphagia and weight loss. Atrial fibrillation lasted less than 12 hours and did not recur. Echocardiogram did not reveal any structural heart disease. A 10-cm, ulcerated mid-esophageal mass was seen during esophagogastroscopy. Microscopic examination showed squamous cell carcinoma. Computed tomography of the chest revealed esophageal thickening compressing the left atrium.</p> <p>Conclusion</p> <p>External compression of the left atrium was previously reported to provoke atrial fibrillation. Similarly, esophageal cancer may precipitate atrial fibrillation by mechanical compression of the left atrium or pulmonary veins, triggering ectopic beats in susceptible patients.</p

    Predictive value of cervical cytokine, antimicrobial and microflora levels for pre-term birth in high-risk women

    Get PDF
    Spontaneous preterm birth (sPTB, delivery <37 weeks gestation), accounts for approximately 10% of births worldwide; the aetiology is multifactorial with intra-amniotic infection being one contributing factor. This study aimed to determine whether asymptomatic women with a history of sPTB or cervical surgery have altered levels of inflammatory/antimicrobial mediators and/or microflora within cervical fluid at 22-24 weeks gestation. External cervical fluid was collected from women with history of previous sPTB and/or cervical surgery at 22-24 weeks gestation (n = 135). Cytokine and antimicrobial peptides were measured on a multiplex platform or by ELISA. qPCR was performed for detection of 7 potentially pathogenic bacterial species. IL-8 and IL-1β levels were lower in women who delivered preterm compared to those who delivered at term (IL-8 P = 0.02; IL-1β P = 0.04). There were no differences in elafin or human beta defensin-1 protein levels between the two groups. Multiple bacterial species were detected in a higher proportion of women who delivered preterm than in those who delivered at term (P = 0.005). Cervical fluid IL-8 and IL-1β and microflora have the potential to be used as biomarkers to predict sPTB in high risk women

    Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28

    Get PDF
    An alkalitolerant fungus, Aspergillus fumigatus strain MA28 produced significant amounts of cellulase-free xylanase when grown on a variety of agro-wastes. Wheat bran as the sole carbon source supported higher xylanase production (8,450 U/L) than xylan (7,500 U/L). Soybean meal was observed to be the best nitrogen source for xylanase production (9,000 U/L). Optimum medium pH for xylanase production was 8 (9,800 U/L), though, significant quantities of the enzyme was also produced at pH 7 (8,500 U/L), 9 (8,200 U/L) and 10 (4,600 U/L). The xylanase was purified by ammonium sulphate precipitation and carboxymethyl cellulose chromatography, and was found to have a molecular weight of 14.4 kDa with a Vmax of 980 μmol/min/mg of protein and a Km of approximately 4.9 mg/mL. The optimum temperature and pH for enzyme activity was 50 °C and pH 8, respectively. However, the enzyme also showed substantial residual activity at 60–70 °C (53–75%) and at alkaline pH 8–9 (56–88%)

    The use of simulation to prepare and improve responses to infectious disease outbreaks like COVID-19: practical tips and resources from Norway, Denmark, and the UK.

    Get PDF
    In this paper, we describe the potential of simulation to improve hospital responses to the COVID-19 crisis. We provide tools which can be used to analyse the current needs of the situation, explain how simulation can help to improve responses to the crisis, what the key issues are with integrating simulation into organisations, and what to focus on when conducting simulations. We provide an overview of helpful resources and a collection of scenarios and support for centre-based and in situ simulations

    Convergent trends and spatiotemporal patterns of Aedes-borne arboviruses in Mexico and Central America

    Get PDF
    Background Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. Methodology/Principal findings Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. Conclusions/Significance Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico’s geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration

    A Fundamental Regulatory Mechanism Operating through OmpR and DNA Topology Controls Expression of Salmonella Pathogenicity Islands SPI-1 and SPI-2

    Get PDF
    DNA topology has fundamental control over the ability of transcription factors to access their target DNA sites at gene promoters. However, the influence of DNA topology on protein–DNA and protein–protein interactions is poorly understood. For example, relaxation of DNA supercoiling strongly induces the well-studied pathogenicity gene ssrA (also called spiR) in Salmonella enterica, but neither the mechanism nor the proteins involved are known. We have found that relaxation of DNA supercoiling induces expression of the Salmonella pathogenicity island (SPI)-2 regulator ssrA as well as the SPI-1 regulator hilC through a mechanism that requires the two-component regulator OmpR-EnvZ. Additionally, the ompR promoter is autoregulated in the same fashion. Conversely, the SPI-1 regulator hilD is induced by DNA relaxation but is repressed by OmpR. Relaxation of DNA supercoiling caused an increase in OmpR binding to DNA and a concomitant decrease in binding by the nucleoid-associated protein FIS. The reciprocal occupancy of DNA by OmpR and FIS was not due to antagonism between these transcription factors, but was instead a more intrinsic response to altered DNA topology. Surprisingly, DNA relaxation had no detectable effect on the binding of the global repressor H-NS. These results reveal the underlying molecular mechanism that primes SPI genes for rapid induction at the onset of host invasion. Additionally, our results reveal novel features of the archetypal two-component regulator OmpR. OmpR binding to relaxed DNA appears to generate a locally supercoiled state, which may assist promoter activation by relocating supercoiling stress-induced destabilization of DNA strands. Much has been made of the mechanisms that have evolved to regulate horizontally-acquired genes such as SPIs, but parallels among the ssrA, hilC, and ompR promoters illustrate that a fundamental form of regulation based on DNA topology coordinates the expression of these genes regardless of their origins

    KSHV Reactivation from Latency Requires Pim-1 and Pim-3 Kinases to Inactivate the Latency-Associated Nuclear Antigen LANA

    Get PDF
    Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA–mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus–host interactions during reactivation and may represent potential novel targets for therapeutic intervention

    Delineation of the Innate and Adaptive T-Cell Immune Outcome in the Human Host in Response to Campylobacter jejuni Infection

    Get PDF
    BACKGROUND: Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought. METHODOLOGY: Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFNγ with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1β and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFNγ, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay. CONCLUSIONS: Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFNγ, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies
    corecore