
RESEARCH ARTICLE

Convergent trends and spatiotemporal

patterns of Aedes-borne arboviruses in

Mexico and Central America

Bernardo Gutierrez1,2*, Darlan da Silva Candido1,3, Sumali Bajaj1, Abril Paulina Rodriguez

Maldonado4, Fabiola Garces Ayala4, Marı́a de la Luz Torre Rodriguez4, Adnan
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C. Hill6, Julien Thézé7, Nuno R. Faria1,3,8,9, Oliver G. Pybus1,6, Lorena Preciado-Llanes10,

Arturo Reyes-Sandoval10,11, Moritz U. G. Kraemer1*, Marina Escalera-ZamudioID
1*

1 Department of Biology, University of Oxford, Oxford, United Kingdom, 2 Colegio de Ciencias Biológicas y

Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador, 3 Instituto de Medicina Tropical,

Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil, 4 Instituto de Diagnóstico y
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Abstract

Background

Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a

significant impact on global health. These viruses share mosquito vector species, often

infecting the same host population within overlapping geographic regions. Thus, compara-

tive analyses of the virus evolutionary and epidemiological dynamics across spatial and

temporal scales could reveal convergent trends.

Methodology/Principal findings

Focusing on Mexico as a case study, we generated novel chikungunya and dengue

(CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-

derived historical sample collection, and analysed them together with longitudinally-col-

lected genome and epidemiological data from the Americas. Aedes-borne arboviruses

endemically circulating within the country were found to be introduced multiple times from

lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at

least thirteen introductions were inferred over a year, with six of these leading to persistent
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transmission chains. For both DENV-1 and DENV-2, at least seven introductions were

inferred over a decade.

Conclusions/Significance

Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and

epidemiological trajectories. The southwest region of the country was determined to be the

most likely location for viral introductions from abroad, with a subsequent spread into the

Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the

country are likely driven by multiple factors, including mobility linked to human migration

from Central towards North America. Considering Mexico’s geographic positioning display-

ing a high human mobility across borders, our results prompt the need to better understand

the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses,

particularly linked to land-based human migration.

Author summary

Mexico is endemic to several Aedes-borne arboviruses relevant to global health, and ranks

within the top five countries in the Americas that report the highest case numbers. Our

study provides a general overview of arbovirus introduction, spread and establishment

patterns in North and Central America, and should be of interest to both local health and

global authorities. Moreover, it sets to explore the paradigm of convergence at different

scales in independent virus populations, represented by comparable epidemiological and

evolutionary trends in Aedes-borne arboviruses sharing ecological niches. Our results rep-

resent important advances in the study of mosquito-borne viruses listed as a threat to

global health, specifically applied to key countries within the developing world.

Introduction

Aedes-borne arboviruses spread is driven by a complex interaction between environmental

conditions [1], ecological factors affecting vector populations [2], human behaviour and

mobility [3–8], as well as pre-existing levels of immunity within the host population [9–11].

Whilst some viruses display seasonal dynamics with varying transmission peaks across time

[12,13], novel and/or re-emerging viruses can cause explosive outbreaks in areas where the

local population has limited or non-existent prior immunity [14–17]. Thus, untangling the

individual contributions of the diverse drivers impacting viral spread across spatiotemporal

scales remains a challenge. However, comparative phylodynamic approaches can provide a

powerful tool to identify shared epidemiological and evolutionary trends, offering valuable

information to better understand current and future outbreaks. Moreover, mapping arboviral

emergence and spread within specific regions can inform on the development of efficient, spa-

tially targeted interventions, including widening genomic-epidemiology surveillance efforts,

local vector control/clearance, and vaccination campaigns.

Apart from sharing vector species, Aedes-borne arboviruses tend to circulate within the

same host population and geographic region, and thus are expected to exhibit similar evolu-

tionary and epidemiological trends (despite their specific disease dynamics likely to be shaped

by immunity within the host population [18–20]). Highlighted by the more recent
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introduction of the Zika (ZIKV) and chikungunya (CHIKV) mosquito-borne viruses into the

Americas (compared to DENV), contrasting the evolutionary and epidemiological dynamics

of emerging and established viruses that have circulated endemically over multiple decades

within the same region, could help identify recurrent patterns in Aedes-borne arboviruses

sharing ecological niches.

In the Americas (ruling out possible unidentified chikungunya fever cases occurring during

the 17th and 19th centuries, likely to be misdiagnosed as dengue fever [21,22]), locally acquired

CHIKV infections were first confirmed during the mid 2010s [23], after which large outbreaks

were detected between 2013 to 2017. On the other hand, all DENV serotypes (DENV-1 to

DENV-4) display a somewhat different epidemic history within the region. Dengue-like illness

has been well documented since the late 1700s [24], yet a considerable epidemiological shift

occurred after the establishment of larger and more frequent outbreaks recorded during the

1950-60s [25]. By the 1980-90s, DENV outbreaks were reported on a yearly basis in at least 24

countries, with virus re-emergence mostly driven by the re-establishment of the previously

eradicated Aedes aegypti mosquito population following the ban of use of DDT in the 1970s

[25] (for more details, see S1 Text).

In Mexico, arbovirus surveillance takes place under the National Epidemiological Surveil-

lance System (‘Sistema Nacional de Vigilancia Epidemiológica–SINAVE’) [26]. SINAVE

involves nationwide case reporting by hospitals and clinics within and outside Mexico’s Minis-

try of Health’s healthcare network. Employing a sentinel approach based on positive case defi-

nition, healthcare institutions select and ship samples (along with essential information such

as patient demographics, symptoms, and initial laboratory test results) to designated State Pub-

lic Health Laboratories (LESP) for diagnosis confirmation using reference cellular and molecu-

lar biology standards. Subsequently, positive samples are sent from the LESP network to

InDRE (Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martı́nez Báez,

Ministry of Health of Mexico, Mexico City) for long-term storage. This enables a centralized

historical collection spanning multiple decades and locations, providing a longitudinal per-

spective for the surveillance of infectious diseases in Mexico. The General Directorate of Epi-

demiology (Dirección General de Epidemiologı́a) oversees SINAVE in centralizing and

compiling data on confirmed cases reported nationwide, in order to facilitate the development

of outbreak response measures and the dissemination of epidemiological information. Specifi-

cally, for Aedes-borne virus surveillance, blood and serum samples are typically shipped to the

National Arbovirus Reference Laboratory, a PAHO-WHO collaborating centre at InDRE [26].

CHIKV surveillance formally commenced in late 2014, with a high number of cases

detected during 2015, particularly in the southern and southwestern states of the country [27].

On the other hand, the longitudinal surveillance of DENV shows that serotypes 1, 2 and 4 co-

circulated in the country since the 1980s [28], whilst DENV-3 was first detected in 1995 [29].

Given ideal ecological and climatic conditions favouring vector populations, the south coast

region of the country (comprising the states of Chiapas, Oaxaca, Guerrero, Veracruz, Tamauli-

pas, Quintana Roo, Campeche and Yucatán) has been historically most affected [28,29]. Of

interest, the spread of CHIKV and ZIKV across the country coincided with a decrease in

DENV incidence observed for these states, with a low in cases recorded during the peak of

both the CHIKV and ZIKV epidemics [30].

Historical samples linked to cases officially reported under SINAVE represents a valuable

tool for retrospectively exploring epidemiological and evolutionary dynamics of Aedes-borne

arboviruses circulating in Mexico. In this light, we present a new set of 39 CHIKV, 7 DENV-1

and 11 DENV-2 partial or complete viral genomes derived from samples collected between

2013 and 2017 across different states of the country. Under the hypothesis that the evolution-

ary and epidemiological dynamics of different Aedes-borne arboviruses circulating in the

PLOS NEGLECTED TROPICAL DISEASES Spatiotemporal patterns of CHIKV and DENV spread in Mexico

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011169 September 6, 2023 3 / 26

https://doi.org/10.1371/journal.pntd.0011169


Americas may display converging trends, we used a phylogeographic approach to analyse

diversely sourced genome data from the region (including the genomes generated here), with

a particular focus on quantifying lineage importations into Mexico. By interpreting our results

alongside longitudinal epidemiological data, we compare the spatial epidemiology of these

three viruses, and further assess extrinsic factors that are likely driving their dynamics. We

find important similarities between the introduction of DENV and CHIKV into the country

across different spatial and temporal scales.

Methods

Ethics statement

We declare that under the authority of the ethics committee “Comité de ética e investigación

del ICSa–UAEH” (Instituto de Ciencias de la Salud/Universidad Autónoma del Estado de

Hidalgo, Mexico), our study has been granted ethical approval registered under the following

number: ICSa 157/2023 (signed by the president Dra. Itzia Maria Cazares Palacios on March

6th 2023). Patient consent was not obtained/required, given that the sample and data utilized

in this study was already anonymized. The study involved no direct interaction with patients.

Sample selection and virus genome sequencing. Derived from the historical Aedes-

borne case sample collection available at InDRE, we sequenced a set of both human and mos-

quito-derived DENV-1, DENV-2 and CHIKV virus genomes from samples selected based on

their geographic location and collection date (S1 Table). Similar to neighbouring countries,

DENV-1 and DENV-2 have prevailed in Mexico since the early 2000s [31,32]. Consequently,

historical samples for other DENV serotypes (specifically DENV-3 and DENV-4) are scarce,

further limiting the possibility of performing in-depth genomic epidemiology-based analyses.

Thus, DENV-3 and DENV-4 samples were excluded. Initially, ZIKV samples were also consid-

ered, but failed to amplify under the multiplexed PCR described below. Briefly, candidate sam-

ples were first selected by identifying those with collection dates and locations poorly

represented by publicly available genomic data from Mexico (https://www.ncbi.nlm.nih.gov/

genbank/). Samples were further selected based on RNA/cDNA availability and initial diag-

nostic qPCR Ct values (Ct� 35). Total RNA was used to generate cDNA using the Super-

Script™ IV First-Strand Synthesis System (Invitrogen, CA, USA) with random hexamers, and

subjected to multiplexed PCR reactions using virus-specific primer sets [33,34]. PCR products

consisted of multiple overlapping ~400 nt fragments that cover the vast majority of the viral

coding regions (excluding extreme ends). PCR reactions were performed using the Q5 High-

Fidelity DNA polymerase kit (New England Biolabs, MA, USA) for 35–40 cycles, whilst prod-

ucts were purified using AmpureXP magnetic bead system (Beckman Coulter, CA, USA) to be

quantified on the Qubit 3.0 using the Qubit dsDNA High Sensitivity kit (Life Technologies,

CA, USA).

For viral genome sequencing, we used a ligation sequencing approach [35] on the MinION

sequencing device (Oxford Nanopore Technologies, UK). Sequencing libraries were prepared

from the purified PCR products using barcoding for individual samples (EXP-NBD104,

EXP-NBD114, and SQK-LSK109 kits, Oxford Nanopore Technologies, UK). For sequencing,

samples were pooled equimolarly to be loaded onto R9.4 flow cells (Oxford Nanopore Tech-

nologies, UK). All runs were carried out until a sequencing depth of>20X was achieved, mon-

itoring in real-time using the RAMPART platform (https://artic.network/ncov-2019/

ncov2019-using-rampart.html). Individual consensus viral genomes were assembled against

designated reference sequences for each serotype under a >95% sequence identity threshold,

whilst their assignment to specific viral genotypes was performed using the Arbovirus Typing
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Tools from the Genome Detective web server [36]. Virus genome sequences generated in this

study are available as alignments provided in S1–S3 Data.

Phylogenetic analyses. To generate the datasets used for analyses, complete viral genome

sequences from the Americas belonging to DENV-1 (Genotype V), DENV-2 (Genotype III)

and CHIKV (Asian Genotype) available in GenBank (https://www.ncbi.nlm.nih.gov/genbank/

) were retrieved. High-quality sequences were included if collected from any country in North,

Central and South America or the Caribbean as of 2020-02-01, and if >10,000 nt long. The

DENV dataset was further expanded by adding 16 DENV-1 and 14 DENV-2 complete

genomes from Nicaragua collected in between 2013 and 2019 (derived from a paediatric

cohort that only became publicly available after initial sequence collation) [37,38]. Our final

datasets include a total of 420 CHIKV, 375 DENV-1, and 643 DENV-2 genome sequences,

selected to represent all countries in North and Central America with virus genome represen-

tation sampled though time. Given the reduced size of our datasets, it was preferable to employ

all available sequences rather than subsampling and risking loss of phylogenetic signal. How-

ever, quality control measures implemented included validating inferred phylogenetic trees by

comparing general evolutionary trends with publicly accessible phylogenies, in order to detect

inconsistencies in known divergence patterns both at broader and deeper node levels. Datasets

encompassed both sequences generated in our study and those obtained from public databases

(accession numbers available in S4 Data). The geographical distribution of the sequences sam-

pled for all analyses can be found in S1 Fig.

Each dataset was aligned using MAFFT [39], visually inspected, and further trimmed to

remove untranslated terminal genomic regions (UTRs). Final alignments comprised a total

length of 11,151 bp for CHIKV, 10,180 bp for DENV-1 and 10,023 bp for DENV-2. Maximum

likelihood (ML) phylogenetic trees were then constructed using IQtree 2.0 [40], resulting in

individual phylogenetic trees for each virus. ML trees were inferred under a General Time

Reversible (GTR) substitution model, whilst the substitution rate heterogeneity across sites

was modelled under a Gamma distribution. Branch support was estimated using non-

parametric Shimoda-Hasegawa approximate Likelihood Ratio Tests (SH-aLRTs) and 1000

replicates [41]. The resulting trees were midpoint rooted and annotated with the sequence col-

lection date and location (country/region). To assess the temporal signal within the trees, the

correlation between tree tips to the root and associated collection dates was visualised as linear

regressions using TempEst v1.5.3 [42].

Time-calibrated phylogeographic analyses. To further investigate the spatial and tempo-

ral dynamics of the viruses studied here, time-calibrated phylogenies were estimated from the

alignments described above with BEAST v1.10.4 [43], using sequence collection dates to

inform tree tips. For two DENV-1 genomes with no collection date available, a uniform prior

was assigned to the corresponding tips. All trees were inferred using the Hasegawa-Kishino-

Yano (HKY) substitution model with rate heterogeneity modelled under a Gamma distribu-

tion. A Skyride tree prior [44] and a relaxed uncorrelated clock model [45] under a continu-

ous-time Markov chain (CTMC) rate prior were further implemented [46]. Markov Chain

Monte Carlo (MCMC) chains were run in duplicate for 1x108 states, with the first 1x107 dis-

carded as a burn-in. Independent runs were combined using LogCombiner, resulting in empir-

ical tree distributions that were summarised into a Maximum Clade Credibility (MCC) tree

using TreeAnnotator. Convergence for individual MCMC chains was assessed using Tracer
[47], verifying that all relevant parameters reached an effective sample size (ESS) value of

>200. In order to evaluate changes in viral effective population size (Ne) across time under a

coalescent model [48], for DENV-2, Tracer was used to generate a Bayesian Skyline plot (BSP)

derived from the MCC tree [46]
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Virus diffusion patterns within Mexico and across neighbouring countries was explored

using a phylogeographic approach under a discrete trait analysis (DTA) [49]. Locations

assigned to tips correspond either to the country of collection, or to the geographic region

within the country where the sequences were collected from (for Mexico sequences only, fol-

lowing the eight-region model as a prevailing standard) (S1 Fig). For this, posterior tree distri-

butions were resampled under an asymmetric substitution model for location reconstruction

at ancestral nodes [49]. The statistical significance of transition rates between locations that

best explain viral diffusion processes was evaluated under a Bayes Factor (BF) test, explored

through a Bayesian Stochastic Search Variable Selection (BSSVS) implemented in BEAST [49].

A criterion of a BF> 4 was used to define well-supported diffusion rates, together with a corre-

sponding posterior probability (PP) of>0.5 [50]. The expected number of transitions between

countries and regions was estimated for each virus subtype using a robust counting approach

[51]. As in the previous step, MCC trees were generated by summarizing the posterior tree

sample, further estimating posterior probabilities for inferred locations at given nodes.

Collation and analysis of historical epidemiological data. The SINAVE system collects

arbovirus data at an individual case level using a digital platform in real time, made available

to us through the National Institute for Epidemiological Diagnosis and Reference (InDRE)

[26]. This database includes over 200 variables for officially confirmed DENV and CHIKV

cases recorded between 2010 and 2019, including: clinical (date of symptom onset, date of

sample collection, final diagnosis), demographic (patient age and sex) and geographic infor-

mation (collection state, municipality and locality). It also included serotype information for a

proportion (approximately 10%) of positive DENV cases confirmed by serology or by PCR

product sequencing. Derived from the database, different variables were used to explore the

epidemiological trends across time of the viruses studied here.

Results

CHIKV genome data

From selected CHIKV samples collected from between May 2014 to December 2015 and 18/32

(56%) federal states in Mexico, we were able to generate 39 complete CHIKV genomes that

were assigned to the Asian genotype, corresponding to the main genotype reported to circulate

in the Americas [52] (S1 Fig and S1 Table). The set of newly generated viral genomes repre-

sent a substantial addition to previous publicly available data from Mexico, enhancing the geo-

graphic and temporal sampling range for CHIKV in the country (Table 1). In this context,

throughout the CHIKV outbreak in the Americas, genome availability across countries gradu-

ally increased through 2014, but was maintained at<10 sequences per month (S2 Fig). Virus

genomes from the USA, various Caribbean territories and Central American nations were

made publicly available in that year, yet a limited number of genome sequences were generated

from Mexico between 2014 and 2015. Overall, the number of CHIKV genomes per country

does not correlate with the cumulative number of cases reported over time (S3 Fig), indicating

a poor association between virus genome and epidemiological data.

Epidemiological dynamics of CHIKV in Central America and Mexico

The first CHIKV cases were reported in the Eastern Caribbean (also named the Lesser Antilles

(S2 Table), likely leading to larger outbreaks posteriorly observed in other Central Caribbean

islands (Fig 1A) [53–60]. During the early phase of the initial outbreak, the Dominican Repub-

lic (Central Caribbean) and Guadeloupe (Eastern Caribbean) reported over 15,000 new daily

cases at their respective epidemic peaks occurring around July and December 2014 (S1A Fig).

Central America and the Andean region of South America also experienced large outbreaks in
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2015 and early 2016 but were generally associated with lower case numbers (Fig 1A). Between

March and December 2015, Colombia reported the largest number of cases within the region

(S2A Fig). Subsequently, the southern cone region of South America (represented predomi-

nantly by Brazil) drove a resurgence of CHIKV cases in the continent over the following year

(between March 2016 and January 2017) (Figs 1A and S2A) [34,53,56,61–64].

Table 1. Aedes-borne arbovirus epidemiology and genome sampling in Mexico.

Region State CHIKV DENV-1 DENV-2
Casesa* Seqsc Expected

casesb**
Seqsc Expected

casesb**
Seqsc

Northwest Baja California Norte 905 2 16703 – 9522 –

Baja California Sur

Chihuahua

Durango

Sinaloa

Sonora

Northeast Coahuila 240 4 6618 – 14207 –

Nuevo León

Tamaulipas

Centre-north Aguascalientes 31 3 6749 – 314 –

Guanajuato

Querétaro

San Luis Potosı́

Zacatecas

Centre-south Mexico state 795 6 5613 1 1150 1

Mexico City

Morelos

West Colima 2959 7 20145 3 8839 4

Jalisco

Michoacán

Nayarit

East Hidalgo 2501 6 17267 1 10225 4

Puebla

Tlaxcala

Veracruz

Southwest Chiapas 3951 12 9994 1 16150 6

Guerrero

Oaxaca

Southeast Campeche 2276 7 12839 70 6384 11

Quintana Roo

Tabasco

Yucatán

*Source: SINAVE data, InDRE/Ministry of Health, Mexico.

**Calculated as the relative proportion of the serotype relative to all serotyped cases multiplied by the total of reported DF/DHF cases, rounded up. Source: SINAVE

data, InDRE/Ministry of Health, Mexico.
aReported between 2015 and 2018.
bReported between 2013 to 2018.
cIncluding genomes generated in this study, plus previous publicly available genome data from Mexico.

https://doi.org/10.1371/journal.pntd.0011169.t001
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The CHIKV epidemic in Mexico began approximately one year after the first outbreak

recorded in the Caribbean islands in late 2013 [65,66]. Mexico reported CHIKV cases from

end 2014 to 2018, with new cases rapidly increased after January 2015 to reach a highest during

the summer of that year (Fig 1B), with numbers growing from 506 (recorded in May) to

around 2700 (recorded in August 2015). CHIKV cases increased in the Southwest region of

the country, followed by case peaks observed in the East (Gulf of Mexico) and West (Pacific

Ocean) coast regions, as well as in the Southeast (encompassing the Yucatán peninsula)

(Fig 1C). Limited numbers of cases were observed in the centre-south region (comprising

Mexico City and surrounding areas). Later, a small peak in cases was observed in the

Fig 1. Epidemiological trends of CHIKV in the Americas from 2013 to 2018. (A) Monthly number of CHIKV cases reported to the Pan-American Health

Organisation (PAHO) between 2013 and 2017, grouped by PAHO region. The largest epidemic peak in Mexico (PAHO North America region) occurred in

2015, highlighted in blue. (B) Monthly number of confirmed CHIKV cases in Mexico grouped by year, as reported by the SINAVE. (C) Monthly number of

confirmed CHIKV cases per geographic region in Mexico during 2015. A map of the states included in each geographic region is shown below. Details of the

states included in each region are available in Table 1. Plots were generated using the ggplot package (https://ggplot2.tidyverse.org/index.html) in R. Original

base layer maps use as a source for geospatial base layer data public domain maps imported from the Natural Earth data project (https://cran.r-project.org/web/

packages/rnaturalearth/index.html).

https://doi.org/10.1371/journal.pntd.0011169.g001
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Northwest, representing the only region that saw a modest second wave of CHIKV cases dur-

ing January 2017 (S4 Fig).

Evolutionary dynamics of CHIKV in Central America and Mexico

Our phylogenetic analysis revealed that the CHIKV outbreak in the Americas was caused by a

single virus lineage (SH-aLRT = 97.9, referred to here as the ‘American’ lineage). This lineage

directly descends from sequences sampled from Southeast Asia and the Pacific Islands

(Fig 2A), denoting a single introduction event of the CHIKV Asian genotype into the Ameri-

cas. An early rapid expansion of CHIKV across North and South America is apparent at the

base of the lineage, supported by a poor clustering pattern observed for sequences collected

from different countries (S5 Fig). Within the ‘American’ lineage, a large clade containing

genome sequences predominantly sampled from the Caribbean, Central America and North

America was identified, including all sequences from Mexico (referred here to as the CCNA

clade. SH-aLRT = 77.5). Within the CCNA, the CHIKV genomes from Mexico mostly group

into 6 well-supported clusters, grouping together other sequences from Central America and

the Caribbean (Figs 2 and S5).

Consistent with previous observations, we estimated an earliest TMRCA date for the root

of the CCNA clade going back to mid-September 2013 (Median = 2013.6941, 95%

HPD = 2013.5867–2013.7865 (Fig 2A). The most basal branches within the CCNA clade show

early viral circulation predominantly within the Eastern Caribbean, suggesting multiple expor-

tations into the Central Caribbean, South, Central and North America region. This includes

two importations into Mexico, comprising the earliest sequence generated from the country

(InDRE04. GenBank Accession KP795107 [67]), and a cluster of sequences from the south-

western state of Chiapas [54] (named here clade A; posterior probability, PP = 0.88) (Fig 2B).

While sequences within clade A were generally no longer sampled after late 2014, a second

well-supported clade (named here clade B; posterior probability, PP = 0.91) was identified.

Before being introduced into Mexico, our results indicate that clade B had initially circulated

within the Eastern Caribbean, but then shifted towards the Central Caribbean. Introductions

into the USA occurred multiple times from both the Eastern and Central Caribbean regions,

leading to subsequent introductions into Nicaragua (S5 Fig). Within clade B, Mexico virus

genomes directly descend from sequences sampled from Nicaragua and the USA. Nonetheless,

given the overrepresentation of sequences from the USA and Nicaragua (S2B Fig), it is likely

that sampling biases may partially account for Nicaragua as an inferred source location.

The reconstruction of virus introduction events of CHIKV into Mexico revealed 13 clusters

with MRCAs likely representing independent introductions from abroad, confirming previous

observations on multiple independent introductions observed for CHIKV in Mexico [55,67–

69]. In seven instances, Mexico sequences represent singleton events, denoting either return-

ing travelers (as is the case with the aforementioned InDRE04 sequence), or poorly sampled

transmission chains (i.e., clades). The remaining six genomes fall within six well-supported

clusters exclusive to Mexico (named here MX_cluster_1—MX_cluster_6). For these clusters,

ancestral MRCA nodes were inferred to have emerged within the Southwest (PPMX_cluster_1 =

0.5619, PSouthwest = 0.7649; PPMX_cluster_3 = 0.9998, PSouthwest = 0.662; PPMX_cluster_4 = 0.9462,

PSouthwest = 0.8362; PPMX_cluster_6 = 0.9971, PSouthwest = 0.9994), in the East (PPMX_cluster_2 =

0.5364, PEast = 0.6846) and in the West of the country (PPMX_cluster_5 = 0.5047, PWest = 0.9092)

(Fig 2B). We identified three significant transition rates across locations between the Americas

and Mexico, namely into the Southwest (BF = 5236.52; PP> 0.99), Centre-north (BF = 86.21;

PP = 0.92) and West (BF = 15.76; PP = 0.68) regions (Fig 2B and 2C). The MRCAs for the six

Mexico clusters were all dated between mid- and late-2014 (Table 2), with two of these
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Fig 2. Time-scaled analysis for CHIKV in Mexico. (A) ML phylogenetic tree of all CHIKV complete genome sequences from the Americas included in our

analysis, with tips coloured by region of collection. (B) Time-calibrated phylogeographic analysis of the CHIKV CCNA. Tip and nodes for locations within

Mexico and are coloured by region, with the main clusters identified numbered (1–6). The map in the inset shows pairs of locations where transition rates

significantly explain the phylogenetic diffusion process, as inferred under a BSSVS analysis. Only transition rates with a posterior probability (PP)> 0.5 are

shown, coloured by Bayes Factor (BF). (C) Posterior probability densities for the TMRCAs of six CHIKV transmission clusters in Mexico. Median values for

each distribution are indicated, with the distributions coloured by the most probable location of each MRCA. Collection dates for InDRE04 (the first sequence

corresponding to a CHIKV imported case into Mexico, collected on 2014-05-30), and InDRE51 (the first confirmed autochthonous case within Mexico,

collected on 2014-10-15) are shown in red and grey, respectively. Plots were generated using the ggplot package (https://ggplot2.tidyverse.org/index.html) in R.

Original base layer maps use as a source for geospatial base layer data public domain maps imported from the Natural Earth data project (https://cran.r-project.

org/web/packages/rnaturalearth/index.html).

https://doi.org/10.1371/journal.pntd.0011169.g002
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(MX_cluster_1 and MX_cluster_6) predating the first autochthonous CHIKV case officially

reported in the country (represented by sequence InDRE51, GenBank accession number

KP795109). However, inferred dates for these MRCAs are later than the sampling date of the

earliest reported introduced CHIKV case in Mexico (InDRE04), with a known a travel history

into the Caribbean [67] (Fig 2B). The remaining clusters circulated in the country since Octo-

ber 2014 (Table 2).

Spatial dynamics of CHIKV across Central America and Mexico

The spread of CHIKV within Mexico was inferred to occur from the Southwest across the

southern and central coastal regions of Mexico. We identified 14 supported transitions, with

source regions predominantly represented by the West, Southwest and Centre-south of the

country (Fig 2A and S3 Table). The MX_cluster_1 makes up the largest transmission chain

identified for CHIKV, circulating across 11 different states (Baja California Norte, Mexico

state, Mexico City, Guerrero, Tamaulipas, San Luis Potosı́, Quintana Roo, Jalisco, Morelos,

Michoacán and Oaxaca). The second largest cluster (MX_cluster_6), corresponds to the earli-

est group of cases sampled from the state of Chiapas, and is exclusive to the Southwest region

[54]. Contrastingly, MX_cluster_3 and MX_cluster_4 were only sampled from two regions

each (comprising only 3 and 2 sequences, respectively), whilst MX_cluster_5 circulated only

across two regions in central Mexico (East and West). Finally, MX_cluster_2 circulated across

three regions in central and northern Mexico (East, Northeast and Northwest).

DENV genome data

We were able to generate 7 complete DENV-1 and 11 DENV-2 partial genomes. DENV genome

sequences generated have collection dates between 2013 and 2017 with a geographical representa-

tion of up to six different states (S1 Table). For DENV-2, insufficient coverage for several genomic

regions (including both UTRs) was observed due to a partial failure during the multiplex PCR

(genome regions that failed to amplify were masked with Ns (S3 Data). Nonetheless, successfully

sequenced sites (5104/10177 bases, corresponding to ~50% of the genome length) encompassed

partial ORFs for the capsid, envelope and glycoprotein (as well as various non-structural protein

partial gene regions: NS1, NS2A, NS2B, NS3, NS4B and NS5). Thus, the virus genome regions

Table 2. Clusters inferred from phylogeographic analyses.

Virus Mexico cluster TMRCA Ancestral location

Median age 95% HPD
CHIKV MX_cluster_1 2014.57 2013.69–2014.74 Southwest

MX_cluster_6 2014.64 2014.42–2014.75 Southwest

MX_cluster_5 2014.83 2014.59–2015.01 East

MX_cluster_2 2014.85 2014.62–2014.04 West

MX_Cluster_4 2014.9 2014.6–2015.11 Southwest

MX_cluster_3 2014.97 2014.72–2015.18 Southwest

DENV DENV-2 cluster_2 1998.97 1997.35–2000.61 Southwest

DENV-2 cluster_1 1999.51 1998.13–2000.79 Southwest

DENV-1 cluster_2 2003.49 2002.31–2004.18 –

DENV-1 cluster_1 2003.81 2001.63–2003.91 –

DENV-1 cluster_3 2004.03 2003.01–2004.8 –

DENV-2 cluster_3 2008.02 2007.15–2008.9 Southwest

DENV-1 cluster_4 2009.35 2008.28–2010.2 –

https://doi.org/10.1371/journal.pntd.0011169.t002
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successfully sequenced provided enough phylogenetic signal for further analyses, further

highlighting the potential use of incomplete genome data for genomic epidemiologic-based phylo-

dynamic inference [70]. Again, newly generated genome data corresponding to DENV in Mexico

represent a considerable improvement of the spatiotemporal representation, which previously

represented only genome sequences sampled from 2012. Furthermore, genomes now represent

two states with no previous data for DENV-1 (Chiapas and Veracruz), and four previously unrep-

resented states for DENV-2 (Colima, Jalisco, Morelos and Veracruz) (S1 Table).

Epidemiological dynamics of DENV 1–2 in Mexico from 2013–2019

Analysis of DENV longitudinal epidemiological data from Mexico shows a clear virus seasonal

pattern fluctuating between 2013 and 2019, with distinct trends across regions (S6 Fig). Dur-

ing 2013, the Northeast, East and Southeast regions reported up to 3000 monthly cases at their

respective peaks, with similar case numbers observed in the Northwest, West and Southwest

regions, (with monthly cases not exceeding 2500) (S6 Fig). The proportion of serotyped cases

increased substantially between 2017 and 2018, when the yearly cumulative number of cases

was at the lowest (S6 Fig). Most samples were identified as DENV-1 or DENV-2, with a

smaller portion of cases identified as DENV-3 or co-infections with multiple serotypes (Fig 3).

When our results were contextualised alongside previously reported epidemiological data

available for DENV serotypes from 2000 to 2013 [71], it becomes clear that DENV-1 was prac-

tically absent from the country until 2004 and 2007, when it began to dominate over other

viral serotypes. Since then, DENV-1 and DENV-2 have been co-circulating showing epidemio-

logical dominance (Fig 3A). DENV serotype replacements have been widely described in Asia

[72–74] and South America [75], whilst a few studies of DENV in Mexico report frequent line-

age replacement events observed for distinct serotypes [31,32]. The periodic importations of

DENV into Mexico we detect throughout 2000–2010 may (partially) explain the shifting domi-

nance observed for specific DENV virus serotypes across time and space.

For the DENV-1 data, a remarkable anomaly was noted: a peak in the number of DENV-1

cases was observed during 2017, whilst an equal proportion of both DENV-1 and DENV-2 sero-

types was recorded at the same time (Fig 3B). This observation can be (partially) explained by

the combination of an overall lower number of DENV cases in the country during this season,

coupled with a highest rate of serotyping and case reporting from the Centre-north region of

the country (S7 Fig). Specifically, during 2017, the proportion of serotyped samples increased in

relation to previous years (S8 Fig), with the Centre-north region serotyping ~95% of all cases.

At the same time, the majority of cases typified as DENV-1 also came from the Centre-north,

resulting in a biased epidemiological trend (S7–S9 Figs). Thus, when breaking down epidemio-

logical patterns per region, some common trends were observed (Fig 3C). Samples classified as

‘other’ DENV serotypes (neither DENV-1 or DENV-2, mainly corresponding to DENV-3 and

4) comprised the minority of the total serotyped cases, and were prominently observed in the

East and Northeast region in 2016 (but were completely absent from the North-western region).

The case proportion of DENV-2 in relation to DENV-1 decreased between 2013 and 2016 for

most of the country, except for the Southeast region. Then, between 2016 and 2017, DENV-2

increased in frequency across the Northeast and Southwest regions, followed by the rest of the

country (particularly in the West and Northwest) as later observed throughout 2018 (Fig 3C).

Evolutionary dynamics of DENV-1 and DENV-2 in Central America and

Mexico

Compared to CHIKV, our phylogeographic analyses revealed that DENV-1 and DENV-2 dis-

play similar epidemiological and evolutionary trends. Specifically, for both DENV trees,
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sequences from Mexico and Nicaragua group together into single clades, along with a few

sequences from Central American, North American and/or the Caribbean in both cases (such

clades are henceforth named here as CAM) (S10 Fig). The CAM clades are comparable to the

CCNA clade described for CHIKV, but were generally found to be geographically constrained.

For DENV-1, the CAM clade dates back to the early 2000s (median age MRCA DENV-1-CAM =

2000.5152, 95% HPD = 1997.8814–2002.2687), whilst for DENV-2 to the late 1990s (median

age MRCA DENV-2-CAM = 1996.8204, 95% HPD = 1995.6215–1997.7913). Reconstructing the

importation and spread patterns of DENV-1 and 2 in Mexico revealed that both CAM clades

circulated predominantly in Nicaragua before they were periodically and independently

Fig 3. Epidemiological trends of DENV in Mexico from 2013 to 2019. (A) The proportion of serotyped DENV cases between 2000 and 2018 in Mexico

shown in reference to the total number of serotyped samples per year for all the country. Data provided by InDRE for this study is shown between the solid

black lines (delimiting 2013 to 2018). Data from previous years was obtained from published sources [71]. The DENV-3 and DENV-4 serotypes together with

potential co-infections (reported between 2013 and 2018) are grouped into the ‘Other’ category. (B) Monthly number of cases assigned to each DENV serotype

in Mexico from 2013 to 2018. (C) Breakdown of serotype proportions in different geographic regions in Mexico between 2013 and 2019, relative to the total

number of serotyped samples for each location. Plots were generated using the ggplot package (https://ggplot2.tidyverse.org/index.html) in R. Original base

layer maps use as a source for geospatial base layer data public domain maps imported from the Natural Earth data project (https://cran.r-project.org/web/

packages/rnaturalearth/index.html).

https://doi.org/10.1371/journal.pntd.0011169.g003
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introduced into Mexico. Five different introductions were identified for DENV-1, whilst three

were detected for DENV-2. Nonetheless, as highlighted before, the overrepresentation of

DENV genome sequences from Nicaragua, together with a limited reduced genome represen-

tation from other countries in the region, are likely to impact phylogeographic reconstructions

(S3 Table).

The sampling timespan for DENV viruses Mexico is mostly overlapping, with DENV-1

sequences collected between 2004 and 2017, and DENV-2 sequences collected between 2000

and 2019. The MRCAs for different clusters within the CAM clades show that both virus sub-

types circulated within the country since the late 1990s. For DENV-2, two clusters date back to

1999 and circulated until 2013, displaying a persistence of approximately 14 years. Consis-

tently, for DENV-1, three clusters date back to the early 2000s, also circulating up to 2013.

Later DENV introductions are associated with a cluster dating back to 2008 (for DENV-2),

and another cluster dating back to 2009 (for DENV-1) (S10 Fig and S3 Table).

Spatial dynamics of DENV-2 across Central America and Mexico

Whilst DENV-2 genomes have been sampled extensively across southern and central Mexico,

the geographical distribution for DENV-1 genomes is mostly limited to the Southeast region.

Thus, DENV-2 is used here to illustrate general DENV spread dynamics across the country

(Fig 4).

Phylogeographic reconstruction shows that the three DENV-2 clusters are likely to have

originated in the Southwest of the country, further spreading towards the East and West

coasts, into the Yucatán peninsula (Fig 4). Movements observed between Nicaragua and the

Southwest of the country support the importation events inferred for DENV-2 into Mexico

(BF = 1124.01, PP = 0.99), with subsequent spread into other states towards the North. Within

Mexico, viral movements from the Southwest into the West (BF = 2929.53, PP> 0.99), South-

east (BF = 1270.88, PP> 0.99) and East (BF = 56.08, PP = 0.90) were inferred as significant.

Movements from the West to the Centre-south region (namely the state of Morelos) were also

significant (BF = 83.25, PP = 0.93), as well as across border movements from south into Guate-

mala (BF = 134.65, PP = 0.96).

For DENV-1 and DENV-2, given the availability of longitudinally-collected epidemiologi-

cal data for over almost two decades within the country, changes in the population size over

time can be estimated by integrating genomic data under a Bayesian Skyline plot (BSP) (see

Methods section: Time-calibrated phylogeographic analyses). The BSPs for both the DENV-1

and DENV-2 CAM lineages show different periods of time representing viral population

growth (suggesting an increase in the number of new cases in Mexico): 2005–2007 and 2011–

2013 for DENV-1, and 2017–2018 for DENV-2 (S11 Fig). These periods coincide with a rela-

tive increase in cases associated to each specific serotype: for DENV-1 observed between

2005–2007, and for DENV-2 between 2017–2018. For DENV-2, the population growth period

identified between 2011–2013 overlaps with a decrease in the serotype’s proportion relative to

DENV-1, followed a subsequent increase observed between 2013–2016. Overall, no clear pat-

tern between the BSP and serotype frequencies was observed.

Discussion

In order to investigate convergence across the epidemiological and evolutionary dynamics of

CHIKV, DENV-1 and DENV-2 viruses circulating in Mexico, we generated complete and par-

tial virus genomes, and analysed them together with genomic and epidemiological data from

the Americas available for over almost two decades. We find important similarities represented

by multiple virus introduction events into the country derived from lineages predominantly
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sampled from the Caribbean and Central America. These three Aedes-borne arboviruses also

share comparable spatiotemporal transmission trends, in which the Southwest region of the

country seems to have played a pivotal role in virus seeding and spread across Mexico.

The general spatial dynamics derived from phylogeographic analysis for DENV in Mexico

(represented by DENV-2) revealed multiple virus importations into the country leading to

extended transmission chains, with a most probable within-country location for viral intro-

ductions determined to be the state of Chiapas. Comprising a better spatial and temporal

Fig 4. Time-scaled analysis for DENV-2 in Mexico. (A) ML phylogenetic tree for DENV-2 in the Americas, with tips coloured according to the geographic

region of collection. (B) Time-calibrated phylogeographic analysis for the DENV-2 CAM lineage, with the MCC tree displaying different sampling locations for

Mexico. Tip and nodes shapes are included for locations within Mexico, coloured by region. Distinct clades identified within the CAM lineage are designated

as Clade A (including one cluster from Mexico) and Clade B (including two clusters from Mexico). The map in the inset shows pairs of locations for which

transition rates were inferred to be significant under a BSSVS analysis. Only transition rates with a posterior probability (PP)> 0.5 are shown, coloured by

Bayes Factor (BF). Original base layer maps use as a source for geospatial base layer data public domain maps imported from the Natural Earth data project

(https://cran.r-project.org/web/packages/rnaturalearth/index.html).

https://doi.org/10.1371/journal.pntd.0011169.g004
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sampling within a single epidemic, the spatial diffusion pattern observed for CHIKV was also

found to be comparable, with most transmission clusters displaying the same inferred ances-

tral location (Chiapas). Of notice, in an independent study by Thézé et al. 2018 [70], a similar

trend was also described for ZIKV in Mexico, again showing a most likely virus introduction

into Chiapas, with subsequent spread towards the north of the country. Our results further

support for an unbiased inference, as viral genomes sampled from this region were not partic-

ularly overrepresented within our datasets. However, an extended genomic representation

within the country could contribute to portray a more complete panorama of virus spread pat-

terns at a higher resolution (i.e., across states).

Despite apparent contrasting epidemiological trends observed among emerging and estab-

lished Aedes-borne arboviruses (e.g. DENV vs CHIKV), it is expected that emerging viruses

may, at some point, display seasonal patterns coupled with a prolonged regional endemicity

[76]. This is clear in countries like India and Thailand, where CHIKV has circulated for an

extended period of time. In such regions, cases tend to peak primarily during the rainy season,

given the favourable environmental conditions that contribute to the breeding and prolifera-

tion of Aedes mosquitoes [77,78]. In the Americas, a similar pattern was already observed dur-

ing the initial CHIKV outbreak in the Caribbean [76]. Subsequently, in Brazil, where the

CHIKV has circulated for longer, seasonality is evident, with an increased virus transmission

over time occurring from December to March in most parts of the country [53,79]. In Mexico,

only a handful of new CHIKV cases have been officially reported after 2018 [80]. However,

serological surveys across different southern states denote a significant disease incidence and

prevalence [81], suggesting that there is substantial underreporting of cases nationwide. Thus,

we speculate that in Mexico, CHIKV is likely to circulate cryptically, where a prolonged virus

endemicity could exhibit seasonal epidemiological trends (similar to those historically

observed for DENV). However, only an increased targeted surveillance in high-risk states

(comprising Chiapas, Oaxaca, Guerrero, Veracruz, Tamaulipas, Quintana Roo, Campeche and

Yucatán, denoting those historically most affected by Aedes-borne viruses) could shed light on

the cryptic epidemiological behaviour of CHIKV, as well as other emerging and established

Aedes-borne arboviruses circulating in Mexico.

Within a global context, southern tropical regions are known to provide the ideal ecological

conditions related to vector competence and establishment, and thus have been historically

associated with Aedes-borne arboviral outbreaks [4,74]. In the Americas, there is evidence that

Aedes-borne arboviruses display seeding and spread trends that derive from high-prevalence

areas [82]. In this light, longitudinal epidemiological case data derived from arbovirus epidem-

ics in Mexico support for the southern tropical region of the country as an important hub for

viral transmission [70], regardless of putative systematic biases towards an increased case

detection given an intensified surveillance within the area. Thus, the independent association

of the Southwestern region of Mexico as a source location for the introduction of DENV,

CHIKV and ZIKV, provides strong evidence for convergence in the spatial dynamics of both

seasonal and emerging Aedes-borne arboviruses circulating within the country.

The spread of Aedes-borne arboviruses in the Americas is largely known to be driven by

human mobility patterns, as mosquitoes tend to follow human populations [24]. In agreement,

our results suggest that Aedes-borne arboviral importation and spread in Mexico has been

driven (to some extent) by human movements, as has been observed in neighbouring coun-

tries [4,74]. Furthermore, some of the virus diffusion patterns we observe are potentially linked

to human movements across borders, particularly following land-based unregulated migration

routes from central America into Mexico and towards the USA [83–86]. Thus, a migration-

informed genomic epidemiology-based disease surveillance could contribute to virus control
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strategies, as human mobility is expected to potentially increase due to changing climatic,

political and socio-economic factors.

Nonetheless, whilst human mobility is an important determinant for arbovirus epidemics,

viral spread is very much shaped by other climatic, ecological and immunological factors [1,9–

11,87]. As an example, the ability of Aedes-borne arboviruses to establish a sustained or sea-

sonal transmission in a recipient geographical area, depends on climatic and ecological condi-

tion, as well as the viral capacity to persistently infect the vector population. In Mexico,

arbovirus persistence is reflected by somewhat independent epidemiological trends observed

across distinct regions of the country. This may be exemplified by the Yucatan peninsula, that

compared to other regions of Mexico, showed a unique epidemiological trend during the late

CHIKV peak in 2015. Nonetheless, exploring arbovirus spatial diffusion patterns across differ-

ent scales can only be achieved through comprehensive approaches that integrate multiple

sourced information (including social, ecological, genomic and epidemiological data).

Predicting spatial spread patterns for Aedes-borne arboviruses could play an important role in

the design of surveillance programs and public health interventions, such as the implementation

of vaccine trials. In this scenario, previous immunity within the host population is an important

covariate to consider when interpreting our results. In this sense, it is not a surprise that the

Southwest of the country (displaying the ideal ecological suitability for vectors, coupled with a

higher probability of new arboviral importations that may result in extended transmission chains)

shows the highest seroprevalence for DENV [11]. Congruently, other regions in Mexico showing

subsequent domestic virus importations from the Southwest (such as the West and Southeast),

also show a high seroprevalence [88,89]. Thus, our results may inform on suitable locations for

vaccine trials targeting multiple Aedes-borne arboviruses applicable to naïve individuals, where

high numbers of new cases are required to achieve targets of efficacy promptly [90].

Limitations of our study include biases for inferred source locations for arboviral introduc-

tions from abroad, likely to be impacted by differences in genomic surveillance efforts across

countries within the same region. In this light, multiple viral introductions were inferred from

Nicaragua into the country, indicating that arbovirus epidemics in Mexico are likely affected

by neighbouring regions [91]. Nevertheless, whilst Nicaragua features a considerable genomic

representation in Latin America [37,38], other countries in central America (such as Belize,

Guatemala, Honduras and El Salvador) have limited publicly available arbovirus genome data,

and thus virus introductions from these cannot be inferred. Further limitations comprise sam-

pling gaps that can bias the inference of ancestral locations at nodes [92], reflected by long

branches separating the clusters identified (indicative of long cryptic circulation periods, or an

unsampled virus genetic diversity) that may result in uncertainty in date estimates derived

from time-calibrated phylogenies. Thus, only an enhanced spatial and temporal virus genome

sampling and sequencing across bordering countries will enable a more detailed exploration of

arboviral dynamics in the region.

As evidenced for CHIKV, the cumulative number of virus genomes by country does not

correlate with officially reported case numbers, and this is likely to mirror data for other

Aedes-borne arboviruses in the Americas. Heterogeneous data sampling prevents a compre-

hensive outbreak characterization, further accentuating the need to strengthen genomic epide-

miology-based surveillance across regions. This also denotes regional disparities in the

intensity of virus genome sampling and sequencing through time. As an example of this, for

some countries like Brazil, an extensive sampling of ZIKV enabled exploring the spatial and

temporal dynamics of the virus across the country [6,93], whereas the lack of data from neigh-

bouring countries left substantial knowledge gaps in the global overview of the epidemic

within the Americas. Despite a limited virus sequencing for Aedes-borne arboviruses in

Mexico, we were still able successfully quantify and characterize lineage-specific transmission
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chains across the country. Nevertheless, a more uniform sampling could uncover additional

clades, offer finer insights into the geographic distribution of such clades, and enhance viral

spread reconstructions at a higher resolution.

Multiple tools have been developed to guide the implementation of interventions to control

the transmission of arboviral diseases [82,91,94]. Our results add to the current knowledge of

arboviral dynamics in Mexico, highlighting the potential predictability of spatial invasion

dynamics. Further incorporating our results into current epidemiological and spatial models

may enhance the accuracy of current risk maps for established and emerging Aedes-borne

arboviruses in Mexico and Central America. Finally, the key role of neighbouring Latin Ameri-

can countries in the development of arboviral epidemics in Mexico, and of the country’s

southern border in the spread of Aedes-borne arboviruses at national scale, prompts the need

to better understand the role of anthropogenic factors in the transmission dynamics of viral

pathogens, particularly concerning the effects of land-based migration. Our study further pin-

points on how joint efforts between public health and academic institutions can foster genomic

epidemiology-based surveillance strategies applied to the developing world.
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Quiñónez, Mauricio Vázquez Pichardo, Oliver G. Pybus, Arturo Reyes-Sandoval, Moritz U.

G. Kraemer, Marina Escalera-Zamudio.
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Bernal S, et al. Potential Risk for Dengue Hemorrhagic Fever: The Isolation of Serotype Dengue-3 in

Mexico. Emerg Infect Dis. 1996; 2: 133–135. https://doi.org/10.3201/eid0202.960210 PMID: 8903215

30. Fernandes-Matano L, Monroy-Muñoz IE, Pardavé-Alejandre HD, Uribe-Noguez LA, Hernández-Cueto
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2016; 22: 145–172. https://doi.org/10.22185/24487147.2016.90.037

85. Riosmena F, Massey DS. Pathways to El Norte: Origins, Destinations, and Characteristics of Mexican

Migrants to the United States 1. 2012; 46: 3–36. https://doi.org/10.1111/j.1747-7379.2012.00879.x

PMID: 22666876

86. Massey DS. Patterns of U. S. Migration from Mexico, the Caribbean, and Central America. 2003; 2: 5–

39.

87. Redding DW, Gibb R, Dan-Nwafor CC, Ilori EA, Yashe RU, Oladele SH, et al. Geographical drivers and

climate-linked dynamics of Lassa fever in Nigeria. Nat Commun. 2021; 12: 1–10. https://doi.org/10.

1038/s41467-021-25910-y PMID: 34599162

88. Amaya-Larios IY, Martı́nez-Vega RA, Mayer S V., Galeana-Hernández M, Comas-Garcı́a A, Sepúl-
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