6,539 research outputs found

    THERMORESPONSIVE, REDOX-POLYMERIZED CELLULOSIC HYDROGELS UNDERGO IN SITU GELATION AND RESTORE INTERVERTEBRAL DISC BIOMECHANICS POST DISCECTOMY

    Full text link
    Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely gelation of CMC in situ within whole IVDs. The CMC-MC hydrogel was tuned to match compressive and swelling NP tissue properties. When injected into whole IVDs after discectomy injury, CMC-MC restored IVD height and compressive biomechanical behaviors, including range of motion and neutral zone stiffness, to intact levels. Subcutaneous implantation of the hydrogels in rats further demonstrated good biocompatibility of CMC-MC with a relatively thin fibrous capsule, similar to comparable biomaterials. In conclusion, CMC-MC is an injectable, tunable and biocompatible hydrogel with strong potential to be used as an NP replacement biomaterial since it can gel in situ, match NP properties, and restore IVD height and biomechanical function. Future investigations will evaluate herniation risk under severe loading conditions and assess long-term in vivo performance

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes

    Deletion of parasite immune modulatory sequences combined with immune activating signals enhances vaccine mediated protection against filarial nematodes

    Get PDF
    <p>Background: Filarial nematodes are tissue-dwelling parasites that can be killed by Th2-driven immune effectors, but that have evolved to withstand immune attack and establish chronic infections by suppressing host immunity. As a consequence, the efficacy of a vaccine against filariasis may depend on its capacity to counter parasite-driven immunomodulation.</p> <p>Methodology and Principal Findings: We immunised mice with DNA plasmids expressing functionally-inactivated forms of two immunomodulatory molecules expressed by the filarial parasite Litomosoides sigmodontis: the abundant larval transcript-1 (LsALT) and cysteine protease inhibitor-2 (LsCPI). The mutant proteins enhanced antibody and cytokine responses to live parasite challenge, and led to more leukocyte recruitment to the site of infection than their native forms. The immune response was further enhanced when the antigens were targeted to dendritic cells using a single chain Fv-αDEC205 antibody and co-administered with plasmids that enhance T helper 2 immunity (IL-4) and antigen-presenting cell recruitment (Flt3L, MIP-1α). Mice immunised simultaneously against the mutated forms of LsALT and LsCPI eliminated adult parasites faster and consistently reduced peripheral microfilaraemia. A multifactorial analysis of the immune response revealed that protection was strongly correlated with the production of parasite-specific IgG1 and with the numbers of leukocytes present at the site of infection.</p> <p>Conclusions: We have developed a successful strategy for DNA vaccination against a nematode infection that specifically targets parasite-driven immunosuppression while simultaneously enhancing Th2 immune responses and parasite antigen presentation by dendritic cells.</p&gt

    A systematic review of the safety of lisdexamfetamine dimesylate

    Get PDF
    BACKGROUND: Here we review the safety and tolerability profile of lisdexamfetamine dimesylate (LDX), the first long-acting prodrug stimulant for the treatment of attention-deficit/hyperactivity disorder (ADHD). METHODS: A PubMed search was conducted for English-language articles published up to 16 September 2013 using the following search terms: (lisdexamfetamine OR lisdexamphetamine OR SPD489 OR Vyvanse OR Venvanse OR NRP104 NOT review [publication type]). RESULTS: In short-term, parallel-group, placebo-controlled, phase III trials, treatment-emergent adverse events (TEAEs) in children, adolescents, and adults receiving LDX were typical for those reported for stimulants in general. Decreased appetite was reported by 25-39 % of patients and insomnia by 11-19 %. The most frequently reported TEAEs in long-term studies were similar to those reported in the short-term trials. Most TEAEs were mild or moderate in severity. Literature relating to four specific safety concerns associated with stimulant medications was evaluated in detail in patients receiving LDX. Gains in weight, height, and body mass index were smaller in children and adolescents receiving LDX than in placebo controls or untreated norms. Insomnia was a frequently reported TEAE in patients with ADHD of all ages receiving LDX, although the available data indicated no overall worsening of sleep quality in adults. Post-marketing survey data suggest that the rate of non-medical use of LDX was lower than that for short-acting stimulants and lower than or equivalent to long-acting stimulant formulations. Small mean increases were seen in blood pressure and pulse rate in patients receiving LDX. CONCLUSIONS: The safety and tolerability profile of LDX in individuals with ADHD is similar to that of other stimulants

    A hybrid fuzzy sliding-mode control for a three-phase shunt active power filter

    Get PDF
    This document is the Accepted Manuscript version of the following article: Mohamed Abdeldjabbar Kouadria, Tayeb Allaoui, and Mouloud Denai, ‘A hybrid fuzzy sliding-mode control for a three-phase shunt active power filter’, Energy Systems, Vol. 8 (2): 297-308, March 2016. The final publication is available at Springer via http://dx.doi.org/10.1007/s12667-016-0198-4.This paper describes the hybrid fuzzy sliding-mode control (HFSMC) for a three phase shunt active shunt filter for the power quality improvement. The Power Quality (PQ) problems in power distribution systems are not new but only recently the effects of these problems have gained public awareness. These non-linear loads are constructed by nonlinear devices in which the current is not proportional to the applied voltage. For the harmonic elimination different methods are used, but in this paper a novel fuzzy logic controller for a three-phase shunt active power filter for the power quality improvement such as reactive power and harmonic current compensation generated due to nonlinear loads. The hybrid fuzzy sliding-mode control (HFSMC) approach is proposed such that it can be applied with advantages to both fuzzy and sliding-mode controller. Simulation results are presented to demonstrate the effectiveness of the control strategy. The results are found to be quite satisfactory to mitigate harmonic distortions, reactive power compensation and power quality improvement.Peer reviewedFinal Accepted Versio
    • …
    corecore