1,004 research outputs found

    Level-Spacing Distributions and the Bessel Kernel

    Get PDF
    The level spacing distributions which arise when one rescales the Laguerre or Jacobi ensembles of hermitian matrices is studied. These distributions are expressible in terms of a Fredholm determinant of an integral operator whose kernel is expressible in terms of Bessel functions of order α\alpha. We derive a system of partial differential equations associated with the logarithmic derivative of this Fredholm determinant when the underlying domain is a union of intervals. In the case of a single interval this Fredholm determinant is a Painleve tau function.Comment: 18 pages, resubmitted to make postscript compatible, no changes to manuscript conten

    Optical Properties of Heavy Fermion Systems with SDW Order

    Full text link
    The dynamical conductivity σ(ω)\sigma (\omega), reflectivity R(ω)R(\omega), and tunneling density of states N(ω)N(\omega) of strongly correlated systems (like heavy fermions) with a spin-density wave (SDW) magnetic order are studied as a function of impurity scattering rate and temperature. The theory is generalized to include strong coupling effects in the SDW order. The results are discussed in the light of optical experiments on heavy-fermion SDW materials. With some modifications the proposed theory is applicable also to heavy fermions with localized antiferromagnetic (LAF) order.Comment: 9 pages, 10 figure

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.

    Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix

    Full text link
    The tiny neutrino masses measured in the neutrino oscillation experiments can be naturally explained by the supersymmetric see-saw mechanism. If the supersymmetry breaking is mediated by gravity, the see-saw models may predict observable lepton flavor violating effects. In this work, we investigate the lepton flavor violating process μeγ\mu\to e\gamma in the kind of neutrino mass models based on the idea of the ``lopsided'' form of the charged lepton mass matrix. The constraints set by the muon anomalous magnetic moment are taken into account. We find the present models generally predict a much larger branching ratio of μeγ\mu\to e\gamma than the experimental limit. Conversely, this process may give strong constraint on the lepton flavor structure. Following this constraint we then find a new kind of the charged lepton mass matrix. The feature of the structure is that both the elements between the 2-3 and 1-3 generations are ``lopsided''. This structure produces a very small 1-3 mixing and a large 1-2 mixing in the charged lepton sector, which naturally leads to small Br(μeγ)Br(\mu\to e\gamma) and the LMA solution for the solar neutrino problem.Comment: 24 pages, 8 figure

    Motion of rotatory molecular motor and chemical reaction rate

    Full text link
    We examine the dependence of the physical quantities of the rotatory molecular motor, such as the rotation velocity and the proton translocation rate, on the chemical reaction rate using the model based only on diffusion process. A peculiar behavior of proton translocation is found and the energy transduction efficiency of the motor protein is enhanced by this behavior. We give a natural explanation that this behavior is universal when certain inequalities between chemical reaction rates hold. That may give a clue to examine whether the motion of the molecular motor is dominated by diffusion process or not.Comment: 12 pages, 8 figure

    On-site Coulomb interaction and the magnetism of (GaMn)N and (GaMn)As

    Full text link
    We use the local density approximation (LDA) and LDA+U schemes to study the magnetism of (GaMn)As and (GaMn)N for a number of Mn concentrations and varying number of holes. We show that for both systems and both calculational schemes the presence of holes is crucial for establishing ferromagnetism. For both systems, the introduction of UU increases delocalization of the holes and, simultaneously, decreases the p-d interaction. Since these two trends exert opposite influences on the Mn-Mn exchange interaction the character of the variation of the Curie temperature (TC_C) cannot be predicted without direct calculation. We show that the variation of TC_C is different for two systems. For low Mn concentrations we obtain the tendency to increasing TC_C in the case of (GaMn)N whereas an opposite tendency to decreasing TC_C is obtained for (GaMn)As. We reveal the origin of this difference by inspecting the properties of the densities of states and holes for both systems. The main body of calculations is performed within a supercell approach. The Curie temperatures calculated within the coherent potential approximation to atomic disorder are reported for comparison. Both approaches give similar qualitative behavior. The results of calculations are related to the experimental data.Comment: to appear in Physical Review

    On the solutions of the Schrodinger equation with some molecular potentials: wave function ansatz

    Get PDF
    Making an ansatz to the wave function, the exact solutions of the DD% -dimensional radial Schrodinger equation with some molecular potentials like pseudoharmonic and modified Kratzer potentials are obtained. The restriction on the parameters of the given potential, δ\delta and η\eta are also given, where η\eta depends on a linear combination of the angular momentum quantum number \ell and the spatial dimensions DD and δ\delta is a parameter in the ansatz to the wave function. On inserting D=3, we find that the bound state eigensolutions recover their standard analytical forms in literature.Comment: 14 page

    ALPGEN, a generator for hard multiparton processes in hadronic collisions

    Get PDF
    This paper presents a new event generator, ALPGEN, dedicated to the study of multiparton hard processes in hadronic collisions. The code performs, at the leading order in QCD and EW interactions, the calculation of the exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data. The current version of the code describes the following final states: (W -> ffbar') QQbar+ N jets (Q being a heavy quark, and f=l,q), with N f fbar)+QQbar+Njets (f=l,nu), with N ffbar') + charm + N jets (f=l,q), N f fbar') + N jets (f=l,q) and (Z/gamma* -> f fbar)+ N jets (f=l,nu), with N<=6; nW+mZ+lH+N jets, with n+m+l+N<=8 and N<=3 including all 2-fermion decay modes of W and Z bosons, with spin correlations; Q Qbar+N jets (N b f fbar' decays and relative spin correlations included if Q=t; Q Qbar Q' Qbar'+N jets, with Q and Q' heavy quarks (possibly equal) and N b f fbar' decays and relative spin correlations included if Q=t; N jets, with N<=6. Parton-level events are generated, providing full information on their colour and flavour structure, enabling the evolution of the partons into fully hadronised final states.Comment: 1+38 pages, uses JHEP.cls. Documents code version 1.2: extended list of processes, updated documentation and bibliograph

    A focal plane detector design for a wide-band Laue-lens telescope

    Get PDF
    The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600 keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1 mm, an energy resolution of a few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.Comment: 10 pages, 9 figure

    Electronic polarization in pentacene crystals and thin films

    Full text link
    Electronic polarization is evaluated in pentacene crystals and in thin films on a metallic substrate using a self-consistent method for computing charge redistribution in non-overlapping molecules. The optical dielectric constant and its principal axes are reported for a neutral crystal. The polarization energies P+ and P- of a cation and anion at infinite separation are found for both molecules in the crystal's unit cell in the bulk, at the surface, and at the organic-metal interface of a film of N molecular layers. We find that a single pentacene layer with herring-bone packing provides a screening environment approaching the bulk. The polarization contribution to the transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and increases by only ~ 10% at surfaces and interfaces, respectively. We also compute the polarization energy of charge-transfer (CT) states with fixed separation between anion and cation, and compare to electroabsorption data and to submolecular calculations. Electronic polarization of ~ 1 eV per charge has a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde
    corecore