1,251 research outputs found
Shear viscosity of a highly excited string and the black hole membrane paradigm
Black hole membrane paradigm states that a certain viscous membrane seems to
be sitting on a stretched horizon of a black hole from the viewpoint of a
distant observer. We show that the shear viscosity of the fictitious membrane
can be reproduced by a highly excited string covering the stretched horizon
except for a numerical coefficient.Comment: 22 pages, no figure, minor correction
A Possible Phase Transition in beta-pyrochlore Compounds
We investigate a lattice of interacting anharmonic oscillators by using a
mean field theory and exact diagonalization. We construct an effective
five-state hopping model with intersite repulsions as a model for
beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase
transition line from large to small oscillation amplitude phases as temperature
decreases. We also discuss the possibility of a phase with local electric
polarizations. Our theory can explain the origin of the mysterious first order
transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
Phonon Dynamics and Multipolar Isomorphic Transition in beta-pyrochlore KOs2O6
We investigate with a microscopic model anharmonic K-cation oscillation
observed by neutron experiments in beta-pyrochlore superconductor KOs2O6, which
also shows a mysterious first-order structural transition at Tp=7.5 K. We have
identified a set of microscopic model parameters that successfully reproduce
the observed temperature dependence and the superconducting transition
temperature. Considering changes in the parameters at Tp, we can explain
puzzling experimental results about electron-phonon coupling and neutron data.
Our analysis demonstrates that the first-order transition is multipolar
transition driven by the octupolar component of K-cation oscillations. The
octupole moment does not change the symmetry and is characteristic to
noncentrosymmetric K-cation potential.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus.
Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis
Design Equation: A Novel Approach to Heteropolymer Design
A novel approach to heteropolymer design is proposed. It is based on the
criterion by Kurosky and Deutsch, with which the probability of a target
conformation in a conformation space is maximized at low but finite
temperature. The key feature of the proposed approach is the use of soft spins
(fuzzy monomers) that leads to a design equation, which is an analog of the
Boltzmann machine learning equation in the design problem. We implement an
algorithm based on the design equation for the generalized HP model on the
3x3x3 cubic lattice and check its performance.Comment: 7 pages, 3 tables, 1 figures, uses jpsj.sty, jpsjbs1.sty, epsf.sty,
Submitted to J. Phys. Soc. Jp
Strong-Coupling Theory of Rattling-Induced Superconductivity
In order to clarify the mechanism of the enhancement of superconducting
transition temperature due to anharmonic local oscillation of a
guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze
the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From
the evaluation of the normal-state electron-phonon coupling constant, it is
found that the strong coupling state is developed, when the bottom of a
potential for the guest ion becomes wide and flat. Then, is
enhanced with the increase of the anharmonicity in the potential, although
is rather decreased when the potential becomes a double-well type
due to very strong anharmonicity. From these results, we propose a scenario of
anharmonicity-controlled strong-coupling tendency for superconductivity induced
by rattling. We briefly discuss possible relevance of the present scenario with
superconductivity in -pyrochlore oxides.Comment: 8 pages, 6 figure
Superconductivity and Rattling under High Pressure in the beta-Pyrochlore Oxide RbOs2O6
Rattling-induced superconductivity in the beta-pyrochlore oxide RbOs2O6 is
investigated under high pressures up to 6 GPa. Resistivity measurements in a
high-quality single crystal show that the superconducting transition
temperature Tc increases gradually from 6.3 K at ambient pressure to 8.8 K at
3.5 GPa, surprisingly remains almost constant at 8.8 \pm 0.1 K in a wide
pressure range between 3.5 (Po) and 4.8 GPa, and suddenly drops to 6.3 K at Ps
= 4.9 GPa, followed by a gradual decrease with further pressure increase. Two
anomalies in the temperature dependence of the normal-state resistivity are
observed at Po Ps, revealing the presence of two high-pressure
phases corresponding to the changes in Tc. The rattling of the Rb ion inside a
cage made of Os and O atoms may be slightly and seriously modified in these
high-pressure phases that probably have cages of reduced symmetry,
respectively, so that electron-rattler interactions that govern the
superconducting and transport properties of beta-RbOs2O6 are significantly
affected.Comment: arXiv admin note: text overlap with arXiv:1009.035
Existence and uniqueness for Legendre curves
We give a moving frame of a Legendre curve (or, a frontal) in the unite tangent bundle and define a pair of smooth functions of a Legendre curve like as the curvature of a regular plane curve. The existence and uniqueness for Legendre curves are holded like as regular plane curves. It is quite useful to analyse the Legendre curves. As applications, we consider contact between Legendre curves and the arc-length parameter of Legendre immersions in the unite tangent bundle.
Upper critical field and de Haas-van Alphen oscillations in KOsO measured in a hybrid magnet
Magnetic torque measurements have been performed on a KOsO single
crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The
upper critical field is determined to be 30 T. De Haas-van Alphen
oscillations are observed. A large mass enhancement of (1+) = = 7.6 is found. It is suggested that, for the large upper critical
field to be reconciled with Pauli paramagnetic limiting, the observed mass
enhancement must be of electron-phonon origin for the most part.Comment: 4 pages, 4 figures, published versio
Large-N spacetime reduction and the sign and silver-blaze problems of dense QCD
We study the spacetime-reduced (Eguchi-Kawai) version of large-N QCD with
nonzero chemical potential. We explore a method to suppress the sign
fluctuations of the Dirac determinant in the hadronic phase; the method employs
a re-summation of gauge configurations that are related to each other by center
transformations. We numerically test this method in two dimensions, and find
that it successfully solves the silver-blaze problem. We analyze the system
further, and measure its free energy F, the average phase theta of its Dirac
determinant, and its chiral condensate . We show that F and
are independent of mu in the hadronic phase but that, as chiral
perturbation theory predicts, the quenched chiral condensate drops from its
mu=0 value when mu~(pion mass)/2. Finally, we find that the distribution of
theta qualitatively agrees with further, more recent, predictions from chiral
perturbation theory.Comment: 43 pages, 17 figure
- …
