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Abstract

We give a moving frame of a Legendre curve (or, a frontal) in the unite tangent
bundle and define a pair of smooth functions of a Legendre curve like as the curvature of
a regular plane curve. The existence and uniqueness for Legendre curves are holded like
as regular plane curves. It is quite useful to analyse the Legendre curves. As applications,
we consider contact between Legendre curves and the arc-length parameter of Legendre
immersions in the unite tangent bundle.

1 Introduction

A regular plane curve determines a curvature function, providing valuable geometric infor-
mation about the original curve by using a moving frame of the curve. The existence and
uniqueness results are fundamental theorems for regular plane curves, see below Theorems 1.1
and 1.2.

Let I be an interval or R. Suppose that γ : I → R2 is a regular curve, that is, γ̇(t) 6= 0
for any t ∈ I. If s is the arc-length parameter of γ, we denote t(s) by the unite tangent vector
t(s) = γ′(s) = dγ/ds(s) and n(s) by the unite normal vector n(s) = J(t(s)) of γ(s), where J
is the anticlockwise rotation of π/2. Then we have the Frenet formula as follows:(

t′(s)
n′(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
t(s)
n(s)

)
,

where κ(s) = t′(s) · n(s) is the curvature of γ and · is the inner product on R2.

Even if t is not the arc-length parameter, we have the unite tangent vector t(t) = γ̇(t)/|γ̇(t)|,
the unite normal vector n(t) = J(t(t)) and the Frenet formula(

ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,
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where γ̇(t) = dγ/dt(t), |γ̇(t)| =
√
γ̇(t) · γ̇(t) and κ(t) = det(γ̇(t), γ̈(t))/|γ̇(t)|3 = ṫ(t)·n(t)/|γ̇(t)|.

Note that κ(t) is independent on the choice of a parametrization.

Let γ and γ̃ : I → R2 be regular curves. We say that γ and γ̃ are congruent if there exists
a congruence C on R2 such that γ̃(t) = C(γ(t)) for all t ∈ I, where the congruence C is a
composition of a rotation and a translation on R2.

As well-known results, the existence and uniqueness for regular plane curves are as follows
(cf. [5, 6]):

Theorem 1.1 (The Existence Theorem) Let κ : I → R be a smooth function. There exists a
regular parametrized curve γ : I → R2 whose associated curvature function is κ.

Theorem 1.2 (The Uniqueness Theorem) Let γ and γ̃ : I → R2 be regular curves whose
speeds s = |γ̇(t)| and s̃ = | ˙̃γ(t)|, and also curvatures κ and κ̃ each coincide. Then γ and γ̃ are
congruent.

If γ has a singular point, we can not construct a moving frame of γ. In the analytic category,
there is a construction of a moving frame of an analytic curve under a mild condition, see in
[9]. However, we can define a moving frame of a frontal for a Legendre curve in the unit
tangent bundle in the smooth category. By using the moving frame, we define a pair of smooth
functions like as the curvature of a regular curve. We call the pair the curvature of the Legendre
curve. It is quite useful to analyse the Legendre curves (or, frontals). In this paper, we give
an existence and uniqueness for Legendre curves like as regular plane curves, see Theorems 1.4
and 1.5. These results are elementary, however, it might be new results, as far as we know.

We say that (γ, ν) : I → R2 × S1 is a Legendre curve if (γ, ν)∗θ = 0 for all t ∈ I, where θ is
a canonical contact form on the unit tangent bundle T1R2 = R2×S1 (cf. [1, 2]). This condition
is equivalent to γ̇(t) · ν(t) = 0 for all t ∈ I. Moreover, if (γ, ν) is an immersion, we call (γ, ν) a
Legendre immersion. We say that γ : I → R2 is a frontal (respectively, a front or a wave front)
if there exists a smooth mapping ν : I → S1 such that (γ, ν) is a Legendre curve (respectively,
a Legendre immersion).

Let (γ, ν) : I → R2 × S1 be a Legendre curve. If γ is a regular curve around a point t0,
then we have the Frenet formula of γ. On the other hand, if γ is singular at a point t0, then
we don’t define such a frame. However, ν is always defined even if t is a singular point of γ.
Therefore, we have the Frenet formula of a frontal γ as follows. We put on µ(t) = J(ν(t)). We
call the pair {ν(t),µ(t)} a moving frame of a frontal γ(t) in R2 and we have the Frenet formula
of a frontal (or, Legendre curve) which is given by(

ν̇(t)
µ̇(t)

)
=

(
0 `(t)
−`(t) 0

)(
ν(t)
µ(t)

)
, (1)

where `(t) = ν̇(t) · µ(t). Moreover, if γ̇(t) = α(t)ν(t) + β(t)µ(t) for some smooth functions
α(t), β(t), then α(t) = 0 follows from the condition γ̇(t) ·ν(t) = 0. Hence, there exists a smooth
function β(t) such that

γ̇(t) = β(t)µ(t). (2)

The pair (`, β) is an important invariant of Legendre curves (or, frontals). We call the pair
(`(t), β(t)) the curvature of the Legendre curve (with respect to the parameter t).
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Definition 1.3 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves. We say that (γ, ν)
and (γ̃, ν̃) are congruent as Legendre curves if there exists a congruence C on R2 such that
γ̃(t) = C(γ(t)) = A(γ(t)) + b(t) and ν̃(t) = A(ν(t)) for all t ∈ I, where C is given by the
rotation A and the translation b on R2.

The main results in this paper are the existence and uniqueness for Legendre curves in the
unite tangent bundle like as regular plane curves, see Theorems 1.1 and 1.2.

Theorem 1.4 (The Existence Theorem) Let (`, β) : I → R2 be a smooth mapping. There
exists a Legendre curve (γ, ν) : I → R2 × S1 whose associated curvature of the Legendre curve
is (`, β).

Theorem 1.5 (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre

curves whose curvatures of Legendre curves (`, β) and (˜̀, β̃) coincide. Then (γ, ν) and (γ̃, ν̃)
are congruent as Legendre curves.

We shall prove these theorems in §2. Moreover, we consider properties of the curvatures of
Legendre curves. As applications, we consider contact between Legendre curves in §3 and give
a special parameter, so-called the arc-length parameter, of Legendre immersions in the unite
tangent bundle in §4. Further applications, we give the evolute of a front by using the moving
frame of a front and the curvature of the Legendre immersion, for more detail in [4].

All maps and manifolds considered here are differential of class C∞.

Acknowledgment. The authors would like to thank Professor Toshizumi Fukui for valuable
comments. The second author was supported by a Grant-in-Aid for Young Scientists (B) No.
23740041.

2 Properties of Legendre curves

First we prove the existence theorem (Theorem 1.4).

Proof of Theorem 1.4. Let θ : I → R be any function with the property that θ̇(t) = `(t) for all
t ∈ I. Furthermore, let

ν(t) = (cos θ(t), sin θ(t)), µ(t) = (− sin θ(t), cos θ(t))

be the curves in the unit circle. Define smooth functions x(t) and y(t) with ẋ(t) = −β(t) sin θ(t)
and ẏ(t) = β(t) cos θ(t). Then γ : I → R2 is given by γ(t) = (x(t), y(t)), that is,

γ(t) =

(
−
∫ (

β(t) sin

∫
`(t) dt

)
dt,

∫ (
β(t) cos

∫
`(t) dt

)
dt

)
.

It follows that γ̇(t) = β(t)µ(t), ν̇(t) = `(t)µ(t) and γ̇(t) · ν(t) = 0 for all t ∈ I. Therefore,
there exists a Legendre curve (γ, ν) : I → R2 × S1 whose associated curvature of the Legendre
curve is (`(t), β(t)). 2

In order to prove the uniqueness theorem (Theorem 1.5), we need two Lemmas.

Lemma 2.1 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be congruent as Legendre curves. Then (γ, ν)

and (γ̃, ν̃) have the same curvatures of Legendre curves (`, β) and (˜̀, β̃) respectively.
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Proof. Since (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves, there exist a rotation A and
a fixed vector b with the property that

γ̃(t) = A(γ(t)) + b, ν̃(t) = A(ν(t))

for all t ∈ I. Since the definition of µ and JA = AJ , we have µ̃(t) = A(µ(t)) for all t ∈ I. By
γ̇(t) = β(t)µ(t) and ν̇(t) = `(t)µ(t),

d

dt
γ̃(t) = A(γ̇(t)) = A(β(t)µ(t)) = β(t)A(µ(t)) = β(t)µ̃(t),

d

dt
ν̃(t) = A(ν̇(t)) = A(`(t)µ(t)) = `(t)A(µ(t)) = `(t)µ̃(t).

Hence we have β(t) = β̃(t) and `(t) = ˜̀(t). 2

Lemma 2.2 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves having equal curvatures

of Legendre curves, that is, (`(t), β(t)) = (˜̀(t), β̃(t)) for all t ∈ I. If there exists a parameter
t = t0 for which (γ(t0), ν(t0)) = (γ̃(t0), ν̃(t0)), then (γ, ν) and (γ̃, ν̃) coincide.

Proof. Let f(t) = ν(t) · ν̃(t) + µ(t) · µ̃(t) be a smooth function on I. Then

ḟ(t) = ν̇(t) · ν̃(t) + ν(t) · ˙̃ν(t) + µ̇(t) · µ̃(t) + µ(t) · ˙̃µ(t)

= (`(t)µ(t)) · ν̃(t) + ν(t) · (˜̀(t)µ̃(t)) + (−`(t)ν(t)) · µ̃(t) + µ(t) · (−˜̀(t)ν̃(t))

= (`(t)− ˜̀(t))µ(t) · ν̃(t) + (˜̀(t)− `(t))ν(t) · µ̃(t) = 0,

since `(t) = ˜̀(t) by the assumption. It follows that f is constant. Moreover, setting t = t0 and
ν(t0) = ν̃(t0), then µ(t0) = µ̃(t0) and hence f(t0) = |ν(t0)|2 + |µ(t0)|2 = 2. The function f is
the constant value 2. By the Cauchy-Schwarz inequality, we have

ν(t) · ν̃(t) ≤ |ν(t)||ν̃(t)| = 1, µ(t) · µ̃(t) ≤ |µ(t)||µ̃(t)| = 1.

If either of these inequalities were strict, the value of f(t) would be less than 2. It follows that
both these inequalities are equalities, and we have ν(t) · ν̃(t) = 1, µ(t) · µ̃(t) = 1 for all t ∈ I.
Then we have

|ν(t)− ν̃(t)|2 = ν(t) · ν(t)− 2ν(t) · ν̃(t) + ν̃(t) · ν̃(t) = 0,

and also |µ(t) − µ̃(t)|2 = 0. Hence ν(t) = ν̃(t) and µ(t) = µ̃(t) for all t ∈ I. Since γ̇(t) =

β(t)µ(t), ˙̃γ(t) = β̃(t)µ̃(t) and the assumption β(t) = β̃(t), (d/dt)(γ(t) − γ̃(t)) = 0. It follows
that γ(t) − γ̃(t) is constant. By the condition γ(t0) = γ̃(t0), we have γ(t) = γ̃(t) for all t ∈ I.
2

Proof of Theorem 1.5. Choose any fixed value t = t0 of the parameter. By using a rotation
A and a translation b, we can assume that γ̃(t0) = A(γ(t0)) + b and ν̃(t0) = A(ν(t0)). By
Lemma 2.1, the curvatures of the Legendre curves (γ, ν) and (A(γ(t)) + b, A(ν(t))) coincide.
By Lemme 2.2, γ̃(t) = A(γ(t)) +b, ν̃(t) = A(ν(t)) for all t ∈ I. It follows that (γ, ν) and (γ̃, ν̃)
are congruent as Legendre curves. 2

Remark 2.3 Both Theorems 1.4 and 1.5 can also prove by using the theory of the existence
and uniqueness for the system of ordinary differential equations.
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Let I and I be intervals. A smooth function s : I → I is a (positive) change of param-
eter when s is surjective and has a positive derivative at every point. It follows that s is a
diffeomorphism map by calculus.

Let (γ, ν) : I → R2 × S1 and (γ, ν) : I → R2 × S1 be Legendre curves whose curvatures of
Legendre curves are (`, β) and (`, β) respectively. Suppose (γ, ν) and (γ, ν) are parametrically
equivalent via the change of parameter s : I → I. Thus (γ(t), ν(t)) = (γ(s(t)), ν(s(t))) for all
t ∈ I. By differentiation, we have

`(t) = `(s(t))ṡ(t), β(t) = β(s(t))ṡ(t).

Hence the curvature of the Legendre curve is depended on a parametrization. However, for
a Legendre immersion (γ, ν) : I → R2 × S1, we can define the normalized curvature and the
arc-length parameter. Then the normalized curvature of the Legendre curve independent on
the change of a parametrization, see in §4. Note that (γ, ν) is a Legendre immersion if and only
if (`(t), β(t)) 6= (0, 0) for all t ∈ I.

Remark 2.4 By the definition of the Legendre curve, if (γ, ν) is a Legendre curve, then (γ,−ν)
is also. In this case, `(t) does not change, but β(t) change to −β(t).

Now we give examples of Legendre curves.

Example 2.5 One of the typical example of a front (and hence a frontal) is a regular plane
curve. Let γ : I → R2 be a regular plane curve. In this case, we may take ν : I → S1 by
ν(t) = n(t). Then it is easy to check that (γ, ν) : I → R2 × S1 is a Legendre immersion (a
Legendre curve).

By a direct calculation, we give a relationship between the curvature of the Legendre curve
(`(t), β(t)) and the curvature κ(t) if γ is a regular curve.

Proposition 2.6 ([4, Lemma 3.1]) Under the above notions, if γ is a regular curve, then
`(t) = |β(t)|κ(t).

Example 2.7 Let n,m and k be natural numbers with m+ k. Let (γ, ν) : I → R2 × S1 be

γ(t) =

(
1

n
tn,

1

m
tm
)
, ν(t) =

1√
t2k + 1

(
−tk, 1

)
.

It is easy to see that (γ, ν) is a Legendre curve, and a Legendre immersion when k = 1. We
call γ is of type (n,m). For example, type (2, 3) is the 3/2-cusp (A2 singularity), type (3, 4) is
the 4/3-cusp (E6 singularity) and type (2, 5) is the 5/2-cusp (A4 singularity) (cf. [2, 3, 7]). By
definition, we have µ(t) = (1/

√
t2k + 1)(−1,−tk) and

`(t) =
ktk−1

t2k + 1
, β(t) = −tn−1

√
t2k + 1.

3 Contact between Legendre curves

In this section, we discuss contact between Legendre curves. Let (γ, ν) : I → R2 × S1; t 7→
(γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2×S1;u 7→ (γ̃(u), ν̃(u)) be Legendre curves, respectively. We say
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that (γ, ν) and (γ̃, ν̃) are k-th order contact at t = t0, u = u0 if

(γ, ν)(t0) = (γ̃, ν̃)(u0),
d

dt
(γ, ν)(t0) =

d

du
(γ̃, ν̃)(u0), · · · ,

dk−1

dtk−1
(γ, ν)(t0) =

dk−1

duk−1
(γ̃, ν̃)(u0)

and
dk

dtk
(γ, ν)(t0) 6=

dk

duk
(γ̃, ν̃)(u0).

Moreover, we say that (γ, ν) and (γ̃, ν̃) are at least k-th order contact at t = t0, u = u0 if

(γ, ν)(t0) = (γ̃, ν̃)(u0),
d

dt
(γ, ν)(t0) =

d

du
(γ̃, ν̃)(u0), · · · ,

dk−1

dtk−1
(γ, ν)(t0) =

dk−1

duk−1
(γ̃, ν̃)(u0).

Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→ (γ̃(u), ν̃(u)) be
Legendre curves. In general, we may assume that (γ, ν) and (γ̃, ν̃) are at least first order contact
at any point t = t0, u = u0, up to congruent as Legendre curves. We denote the curvatures of
the Legendre curves (`(t), β(t)) of (γ, ν) and (˜̀(u), β̃(u)) of (γ̃, ν̃), respectively.

Theorem 3.1 Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→
(γ̃(u), ν̃(u)) be Legendre curves. If (γ, ν) and (γ̃, ν̃) are at least (k + 1)-th order contact at
t = t0, u = u0 then

(`, β)(t0) = (˜̀, β̃)(u0),
d

dt
(`, β)(t0) =

d

du
(˜̀, β̃)(u0), · · · ,

dk−1

dtk−1
(`, β)(t0) =

dk−1

duk−1
(˜̀, β̃)(u0). (3)

Conversely, if the condition (3) holds, then (γ, ν) and (γ̃, ν̃) are at least (k+1)-th order contact
at t = t0, u = u0, up to congruent as Legendre curves.

Proof. Suppose that (γ, ν) and (γ̃, ν̃) are at least second order contact at t = t0, u = u0. Since
ν(t0) = ν̃(u0), we have µ(t0) = µ̃(u0). By (1) and (2), (d/dt)(γ, ν)(t) = (β(t)µ(t), `(t)µ(t)) and

(d/du)(γ̃, ν̃)(u) = (β̃(u)µ̃(u), ˜̀(u)µ̃(u)). It follows that `(t0) = ˜̀(u0), β(t0) = β̃(u0). Hence,
the case of k = 1 holds.

Suppose that (γ, ν) and (γ̃, ν̃) are at least (k + 1)-th order contact at t = t0, u = u0 and

(`, β)(t0) = (˜̀, β̃)(u0),
d

dt
(`, β)(t0) =

d

du
(˜̀, β̃)(u0), · · · ,

dk−2

dtk−2
(`, β)(t0) =

dk−2

duk−2
(˜̀, β̃)(u0)

hold. It follows that (dk/dtk)γ(t) and (dk/dtk)ν(t) are given by the form

dk−1

dtk−1
β(t)µ(t) + f1

(
β(t), `(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
`(t)

)
ν(t)

+ f2

(
β(t), `(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
`(t)

)
µ(t)

and

dk−1

dtk−1
`(t)µ(t) + g1

(
β(t), `(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
`(t)

)
ν(t)

+ g2

(
β(t), `(t), . . . ,

dk−2

dtk−2
β(t),

dk−2

dtk−2
`(t)

)
µ(t)
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for some smooth functions f1, f2, g1 and g2. By the same calculations,

dk

duk
γ̃(u) =

dk−1

duk−1
β̃(u)µ̃(u) + f1

(
β̃(u), ˜̀(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
˜̀(u)

)
ν̃(u)

+ f2

(
β̃(u), ˜̀(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
˜̀(u)

)
µ̃(u),

dk

duk
ν̃(u) =

dk−1

duk−1
˜̀(u)µ̃(u) + g1

(
β̃(u), ˜̀(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
˜̀(u)

)
ν̃(u)

+ g2

(
β̃(u), ˜̀(u), . . . ,

dk−2

duk−2
β̃(u),

dk−2

duk−2
˜̀(u)

)
µ̃(u).

It follows that ((dk−1/dtk−1)`, (dk−1/dtk−1)β)(t0) = ((dk−1/duk−1)˜̀, (dk−1/duk−1)β̃)(u0). By the
induction, we have the first assertion.

By reversing arguments, we can prove the converse assertion, up to congruent as Legendre
curves. 2

Note that if γ is a regular curve, then we also consider a contact between curves (cf. [4]).

Let γ : I → R2; t 7→ γ(t) and γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves, respectively. We
say that γ and γ̃ are at least k-th order contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · ,

dkγ

dtk
(t0) =

dkγ̃

duk
(u0).

By example 2.5, we take ν : I → S1, ν(t) = n(t) and ν̃ : Ĩ → S1, ν̃(u) = ñ(u).

If s be the arc-length parameter of γ, then `(t) = κ(t) and |β(t)| = 1 by Proposition 2.6.
Therefore, we have following result as a corollary of Theorem 3.1.

Corollary 3.2 Let γ : I → R2 and γ̃ : Ĩ → R2 be regular curves with the arc-length parameters.
Under the above notations, (γ, ν) and (γ̃, ν̃) are Legendre immersions. Then (γ, ν) and (γ̃, ν̃)
are at least (k+1)-order contact at t = t0, u = u0 if and only if γ and γ̃ are at least (k+1)-order
contact at t = t0, u = u0.

4 Legendre immersions

In this section, we consider Legendre immersions in the unit tangent bundle. Let (γ, ν) : I →
R2×S1 be a Legendre immersion. Then the curvature of the Legendre immersion (`(t), β(t)) 6=
(0, 0). In this case, we define the normalized curvature for the Legendre immersion by

(
`(t), β(t)

)
=

(
`(t)√

`(t)2 + β2(t)
,

β(t)√
`(t)2 + β(t)2

)
.

The normalized curvature
(
`(t), β(t)

)
is independent on the choice of a parametrization, see in

§2. Moreover, since `(t)2 + β(t)2 = 1, there exists a smooth function θ(t) such that

`(t) = cos θ(t), β(t) = sin θ(t).

7



It is helpful to introduce the notion of the arc-length parameter of Legendre immersions. In
general, we can not consider the arc-length parameter of the front γ, since γ may have singular-
ities. However, (γ, ν) is an immersion, we introduce the arc-length parameter for the Legendre
immersion (γ, ν). The speed s(t) of the Legendre immersion at the parameter t is defined to be
the length of the tangent vector at t, namely,

s(t) = |(γ̇(t), ν̇(t))| =
√
γ̇(t) · γ̇(t) + ν̇(t) · ν̇(t).

Given scalars a, b ∈ I, we define the arc-length from t = a to t = b to be the integral of the
speed,

L(γ, ν) =

∫ b

a

s(t) dt.

By the same method for the are-length parameter of a regular plane curve, one can prove the
following:

Proposition 4.1 Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) be a Legendre immersion, and let
t0 be a fixed choice of parameter. Then (γ, ν) is parametrically equivalent to a unit speed curve

(γ, ν) : I → R2 × S1; s 7→ (γ(s), ν(s)) = (γ ◦ u(s), ν ◦ u(s)),

under a change of parameter u : I → I with u(0) = t0 and everywhere positive derivative.

We call the above parameter s in Proposition 4.1 the arc-length parameter for the Legendre
immersion. Let s be the are-length parameter for (γ, ν). By definition, we have γ′(s) · γ′(s) +
ν ′(s) · ν ′(s) = 1, where ′ is the derivation with respect to s. It follows that `(s)2 + β(s)2 = 1.
Then there exists a smooth function θ(s) such that

`(s) = cos θ(s), β(s) = sin θ(s).

Also, as a corollary of Theorem 3.1, we have the following corollary:

Corollary 4.2 Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→
(γ̃(u), ν̃(u)) be Legendre immersions with the arc-length parameters. Suppose that θ : I → R
and θ̃ : Ĩ → R are smooth functions with the conditions

`(t) = cos θ(t), β(t) = sin θ(t), ˜̀(u) = cos θ̃(u), β̃(u) = sin θ̃(u).

If (γ, ν) and (γ̃, ν̃) are at least (k + 1)-th order contact at t = t0, u = u0, then there exists a
integer n ∈ Z such that

θ(t0) = θ̃(u0) + 2nπ,
dθ

dt
(t0) =

dθ̃

du
(u0), · · · ,

dk−1θ

dtk−1
(t0) =

dk−1θ̃

duk−1
(u0). (4)

Conversely, if the condition (4) holds, then (γ, ν) and (γ̃, ν̃) are at least (k+1)-th order contact
at t = t0, u = u0, up to congruent as Legendre immersions.

Finally, we consider a relation between the curvature of the Legendre immersion and the zigzag
number (or Maslov index) (cf. [8]).
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Proposition 4.3 Let (γ, ν) : [a, b] → R2 × S1 be a closed Legendre immersion with the cur-
vature of the Legendre immersion (`, β). Suppose that (γ, ν) is parametrized by the arc-length
parameter t and θ is a smooth function which satisfy `(t) = cos θ(t) and β(t) = sin θ(t). Then
(1/2π)|θ(b)− θ(a)| is equal to the zigzag number of the front γ.

Proof. Let z(γ) be the zigzag number of γ, By the definition of the zigzag number (see
[8] for example), z(γ) = |deg([−ν̇(t), γ̇(t)])| = |deg([−`(t), β(t)])| = |deg([− cos θ(t), sin θ(t)])|,
where [−ν̇(t), γ̇(t)] is a ratio of two vectors, [−`(t), β(t)] and [− cos θ(t), sin θ(t)] are ratios
of two real numbers, in other words, elements of the real projective line. We consider the
real projective line as S1, then deg([− cos θ(t), sin θ(t)]) means a rotation number of the map
t 7→ (− cos θ(t), sin θ(t)) ∈ S1. Thus, |θ(b)− θ(a)| = 2π|deg([− cos θ(t), sin θ(t)])|. Therefore we
obtain (1/2π)|θ(b)− θ(a)| = z(γ). 2

Remark 4.4 Let (γ, ν) : [a, b]→ R2 × S1 be a closed Legendre immersion with the curvature
(`, β). Suppose that (γ, ν) is parametrized by the arc-length parameter t and θ is a smooth
function which satisfy `(t) = cos θ(t) and β(t) = sin θ(t). Then the curvature of the Legendre

immersion (γ,−ν) is equal to (`,−β) (Remark 2.4). We denote (`(t),−β(t)) = (cos θ̃(t), sin θ̃(t))

for a smooth function θ̃. Then we obtain simultaneous equations cos θ(t) = cos θ̃(t) and

sin θ(t) = − sin θ̃(t). It follows that there exists an integer n such that θ(t) = −θ̃(t) + 2nπ.

Thus θ(b)− θ(a) = −θ̃(b) + θ̃(a).
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