526 research outputs found

    Real-Time PCR in HIV/Trypanosoma cruzi Coinfection with and without Chagas Disease Reactivation: Association with HIV Viral Load and CD4+ Level

    Get PDF
    Chagas disease is endemic in Latin America and is caused by the flagellate protozoan T. cruzi. The acute phase is asymptomatic in the majority of the cases and rarely causes inflammation of the heart or the central nervous system. Most infected patients progress to a chronic phase, characterized by cardiac or digestive involvement when not asymptomatic. However, when patients are also exposed to an immunosuppressant (such as chemotherapy), neoplasia, or other infections such as HIV, T. cruzi infection may develop into a severe disease (Chagas disease reactivation) involving the heart and central nervous system. The current microscopic methods for diagnosing Chagas disease reactivation are not sensitive enough to prevent the high rate of death observed in these cases. Therefore, we propose a quantitative method to monitor blood levels of the parasite, which will allow therapy to be administered as early as possible, even if the patient has not yet presented symptoms

    Cytotoxic T cells and mycobacteria

    Get PDF
    How the immune system kills Mycobacterium tuberculosis is still a puzzle. the classical picture of killing due to phagocytosis by activated macrophages may be only partly correct. Based on recent evidence, we express here the view that cytotoxic T lymphocytes also make an important contribution and suggest that DNA vaccines might be a good way to enhance this. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.Univ São Paulo, Sch Med Ribeirao Preto, Dept Biochem & Immunol, BR-14049900 Ribeirao Preto, SP, BrazilUniv São Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Clin Anal Bromatol & Toxicol, BR-14049 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Dept Microbiol & Immunol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol & Immunol, São Paulo, BrazilWeb of Scienc

    Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Get PDF
    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death

    Genetic vaccine for tuberculosis (pVAXhsp65) primes neonate mice for a strong immune response at the adult stage

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated.\ud \ud \ud \ud Methods\ud \ud Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA.\ud \ud \ud \ud Results\ud \ud This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life.\ud \ud \ud \ud Conclusion\ud \ud These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.The authors are grateful to Secretaria da Saúde do Estado de São Paulo for providing BCG and to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) that supported this study with a grant (Proc. No. 03/06348-7).The authors are grateful to Secretaria da Saúde do Estado de São Paulo for providing BCG and to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) that supported this study with a grant (Proc. No. 03/063487)

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Application of botryosphaeran as a carbon black adherent on a glassy carbon electrode for the electrochemical determination of cyclobenzaprine

    Get PDF
    The present work describes the performance of a new voltammetric sensor based on the modification of glassy carbon electrodes (GCE) with carbon black (CB) and botryosphaeran (BOT) (CB-BOT/GCE) for the electroanalytical determination of cyclobenzaprine. BOT is a fungal exocellular (1→3)(1→6)-β-ᴅ-glucan, which was used to improve the adherence of CB onto the surface of GCE. The electrochemical characterisation was performed by electrochemical impedance spectroscopy which showed an improvement in the transfer of electrons on the surface of the sensor developed in relation to the unmodified (bare) GCE. The voltammetric behaviour of cyclobenzaprine was studied using bare GCE, BOT/GCE, CB/GCE, and CB-BOT/GCE. All electrodes presented an oxidation peak (+ 1.0 V) for cyclobenzaprine, while the cyclobenzaprine peak intensity on CB-BOT/GCE was found to be 480% higher than the bare GCE. Through employing square-wave voltammetry, the analytical curve was found to be linear over the concentration range of 2.0 to 20.6 μmol L−1 (in 0.1 mol L−1 NaCl solution) with a detection limit (based on 3-sigma) of 0.63 μmol L−1. The developed electrochemical sensor exhibited excellent sensitivity and selectivity and was successfully applied for the voltammetric determination of cyclobenzaprine in pharmaceutical, biological, and environmental samples for the first time using the CB-BOT/GCE electrochemical sensing platform

    DNA vaccine containing the mycobacterial hsp65 gene prevented insulitis in MLD-STZ diabetes

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Our group previously demonstrated that a DNA plasmid encoding the mycobacterial 65-kDa heat shock protein (DNA-HSP65) displayed prophylactic and therapeutic effect in a mice model for tuberculosis. This protection was attributed to induction of a strong cellular immunity against HSP65. As specific immunity to HSP60 family has been detected in arthritis, multiple sclerosis and diabetes, the vaccination procedure with DNA-HSP65 could induce a cross-reactive immune response that could trigger or worsen these autoimmune diseases.\ud \ud \ud \ud Methods\ud \ud In this investigation was evaluated the effect of a previous vaccination with DNA-HSP65 on diabetes development induced by Streptozotocin (STZ). C57BL/6 mice received three vaccine doses or the corresponding empty vector and were then injected with multiple low doses of STZ.\ud \ud \ud \ud Results\ud \ud DNA-HSP65 vaccination protected mice from STZ induced insulitis and this was associated with higher production of IL-10 in spleen and also in the islets. This protective effect was also concomitant with the appearance of a regulatory cell population in the spleen and a decreased infiltration of the islets by T CD8+ lymphocytes. The vector (DNAv) also determined immunomodulation but its protective effect against insulitis was very discrete.\ud \ud \ud \ud Conclusion\ud \ud The data presented in this study encourages a further investigation in the regulatory potential of the DNA-HSP65 construct. Our findings have important implications for the development of new immune therapy strategies to combat autoimmune diseases.The authors are grateful to Mrs. Izaíra T Brandão and Mrs. Ana Paula Masson for technical assistance. This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) and the Rede Brasileira de Pesquisa em TB (REDETB, Brazilian Tuberculosis Research Network).The authors are grateful to Mrs. Izaíra T Brandão and Mrs. Ana Paula Masson for technical assistance. This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) and the Rede Brasileira de Pesquisa em TB (REDE-TB, Brazilian Tuberculosis Research Network)

    Decreased production of TNF-alpha by lymph node cells indicates experimental autoimmune encephalomyelitis remission in Lewis rats

    Full text link
    Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-γ and TNF-α, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-γ and TNF-α by TGF-β. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-α and IFN-γ production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-α levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission
    • …
    corecore