88 research outputs found

    Comparison of Raman and mid-infrared spectroscopy for quantification of nitric acid in PUREX-relevant mixtures

    Get PDF
    During the plutonium uranium reduction extraction (PUREX) process, nitric acid facilitates the extraction of actinides from the aqueous phase into the organic phase by forming neutral, organic soluble complexes with tri-n-butyl phosphate (TBP). The concentration of nitric acid is generally measured by titration; however, titration is a time-consuming method that generates significant volumes of additional waste. Optical spectroscopic techniques can be used to perform fast, automated measurements off-line or on-line, without generating any waste. In this work, the effectiveness of Raman and mid-infrared (MIR) spectroscopy has been compared for the first time as an alternative to titration for the quantification of nitric acid in PUREX-relevant mixtures. Samples of 0 – 12 M nitric acid in the aqueous phase and 0 – 1.10 M nitric acid in the organic phase (TBP/odourless kerosene (OK)-H2O-HNO3 model system) were analysed and partial least squares (PLS) regression models were built to predict nitric acid concentration. MIR spectra required less pre-processing than Raman spectra and more accurate predictions of nitric acid concentration were obtained for MIR spectroscopy than for Raman spectroscopy, with root mean square error of prediction (RMSEP) values of 0.099 M versus 0.148 M obtained for the aqueous phase and root mean square error of cross validation (RMSECV) values of 0.006 M versus 0.013 M obtained for the organic phase. To investigate the ability to predict nitric acid concentration in the presence of uranyl nitrate, samples containing uranium (0 – 100 g/L) and nitric acid (0.15 – 0.64 M) in the organic phase (U-TBP/OK-H2O-HNO3 model system) were analysed by Raman and MIR spectroscopy. The RMSECV was 0.027 M and 0.066 M for MIR and Raman spectroscopy, respectively; these values are higher than those obtained in the absence of uranyl nitrate owing to differences in the experimental approaches employed. Therefore, the results obtained demonstrate that MIR or Raman spectroscopy could be used to measure the concentration of nitric acid in the organic and aqueous phases in the PUREX process

    The rapid photochemical reduction of U(VI) at high uranium concentrations relevant to spent nuclear fuel recycle processes

    No full text
    An Advanced PUREX process for the recycling of spent nuclear fuel is currently under active development in the UK. Its key aims are to avoid pure separated plutonium at all stages of the process to enhance the level of proliferation resistance, and to achieve a single cycle flowsheet that has a smaller plant footprint with consequent decreases in the capital cost and secondary wastes generated. Addressing these aims, a significant feature of the process is the co-treatment of U and Pu and thus the in situ co-conversion of mixed actinide metal nitrate solutions into oxide powders, suitable for the fabrication of new mixed metal oxide (MOx) fuel. The baseline industrial process for plutonium recovery is by oxalate precipitation; however, in order to quantitatively recover both U and Pu the uranium must be in the U(IV) oxidation state due to the high solubility of U(VI) oxalate. The first stage of this co-conversion, the development of which is reported on here, is the rapid, clean photochemical co-reduction of a mixed U(VI)/Pu(IV) nitrate stream to U(IV)/Pu(III). Here we describe a study of the reduction of U(VI) in preparation for mixed U(VI)/Pu(IV) reduction trials. Exploiting the photochemistry of U, we demonstrate the convenient and efficient photo-excitation and chemical reduction of U(VI) upon exposure to 407 nm wavelength light in the presence of alcohol-based reductants. Using a purpose built laboratory-scale photochemical reactor, U(VI) solutions of up to process-relevant concentrations of 630 mmol/dm3 (150 g/l) U have been successfully converted to a U(IV) product, achieving a conversion efficiency of ∼98% within 1.5–15 min when using propan-2-ol as a sacrificial reductant. Modelling of the dependence of the rate of U(IV) generation on initial U(VI) concentration reveals the importance of light penetration depth and effective solution mixing in determining the efficiency of the photochemical process at high U-loadings. It also reveals that the photoreduction of U(VI) to U(IV) occurs by two sequential 1-electron reductions: (i) the photochemically driven reduction of UO22+ to UO2+ by propan-2-ol, which itself is oxidised to form an α-hydroxyalkyl radical, immediately followed by (ii) a second chemical reduction of UO22+ to UO2+ and/or UO2+ to U4+ by the so-formed radical. With the addition of a nitrous acid scavenger to prevent re-oxidation of the photochemically generated U(IV), a stable product is maintained indefinitely, and the solution is suitable for subsequent oxalate co-precipitation as part of a MOx fuel fabrication process

    Plutonium Loading of Prospective Grouped Actinide Extraction (GANEX) Solvent Systems based on Diglycolamide Extractants

    No full text
    The Grouped Actinide Extraction (GANEX) process is being developed for actinide recycling within future nuclear fuel cycles. Interactions between potential solvents and macro-concentrations of plutonium are one of the most important issues in defining the GANEX process. Surprisingly, plutonium loading of diglycolamide (DGA) based solvents such as tetra-octyl DGA (TODGA) causes precipitation rather than a conventional third phase, in direct contrast to results with U(VI), Th(IV) or lanthanide ions. Various DGA based solvent systems have been screened for their plutonium loading capacity and 0.2 M TODGA with 0.5 M DMDOHEMA in a kerosene diluent is selected as the optimum solvent formulation of those tested. Plutonium can be relatively easily stripped from this solvent using aqueous acetohydroxamic acid but this is very acid dependent in the low acidity region

    Applications of Diglycolamide Based Solvent Extraction Processes in Spent Nuclear Fuel Reprocessing, Part 1: TODGA

    No full text
    Over the last decade there has been much interest in the applications of diglycolamide (DGA) ligands for the extraction of the trivalent lanthanide and actinide ions from PUREX high active raffinates or dissolved spent nuclear fuel. Of the DGAs, the N,N,N’,N’-tetraoctyldiglycolamide (TODGA) is the best known and most widely studied. A number of new actinide separation processes have been proposed based on extraction with TODGA. This review covers TODGA-based processes and extraction data, specifically focusing on how phase modifiers have been used to increase metal loading and thus enhance the operating process envelopes. Effects of third phase formation and the organic phase speciation are reviewed in this context. Relevant aspects of the extraction chemistry of important solvents (TODGA-modifier-diluent combinations) are described and their performances demonstrated by a consideration of the published flowsheet tests. It is seen that modifiers are successfully enabling the use of TODGA in actinide separation processes but to date the identification and testing of suitable modifiers has been rather empirical. There is a growing understanding of the fundamental chemistry occurring in the organic phase and how that affects extractant speciation and metal loading capacity but studies are still needed if TODGA-based flowsheets are to become an industrially deployable option for minor actinide (MA) recovery processes
    • …
    corecore