16 research outputs found

    Enhancement Of The Photoelectrochemical Response Of Poly(terthiophenes) By Cds(zns) Core-shell Nanoparticles

    No full text
    We have investigated the photoelectrochemical properties of hybrid films of polythiophenes poly(4,4″dimethoxy-3′-methyl-2,2′:5′,2″ terthiophene) (PDM), poly(4,4″dipentoxy-3′-methyl-2,2′:5′,2″ terthiophene) (PDP), and cadmium sulfide/zinc sulfide (CdS(ZnS)) core-shell nanoparticles. Although CdS(ZnS) nanoparticles present enhanced exciton trapping, light harvesting by hybrid films was enhanced when compared to those of pure PDM and PDP films. This enhancement is explained in terms of electron and hole transfer mechanisms at different excitation wavelengths. The more efficient light harvesting of PDM/CdS(ZnS) when compared to that of PDP/CdS(ZnS) was attributed to its broader absorption spectrum and more efficient electron hopping. © 2009 Elsevier B.V. All rights reserved.5171855235529Nalwa, H.S., (1998) Handbook of the advanced electronic and photonic materials and devices, , Academic press, LondonMurray, C.B., Norris, D.J., Bawendi, M.G., (1993) J. Am. Chem. Soc., 115, p. 8706Casalbore-Miceli, G., Camaioni, N., Gallazi, M.C., Albertin, L., Fichera, A.M., Geri, A., Girotto, E.M., (2001) Synth. Met., 125, p. 307Tracey, M.C., Gordon, K.C., Officer, D.L., Hall, S.B., Collis, G.E., Burrell, A.K., (2003) J. Phys. Chem., A, 107, p. 11505Barta, P., Osikowicz, W., Salaneck, W.R., Zgorska, M., Niziol, S., (1999) Synth. Met., 101, p. 295Greenham, N.C., Peng, X., Alivisatos, A.P., (1996) Phys. Rev., B, 54, p. 17628Sheeney-Haj-Ichia, L., Basnar, B., Willner, I., (2005) Angew. Chem., Int., 44, p. 78Protiere, M., Reiss, P., (2006) Nanoscale Res. Lett., 1, p. 62Barazzouk, S., Kamat, P.V., Hotchandani, S., (2005) J. Phys. Chem., B, 109, p. 716Sharma, S.N., Pillai, Z.S., Kamat, P.V., (2003) J. Phys. Chem., B, 107, p. 10088Ipe, B.I., Thomas, K.G., Barazzouk, S., Hotchandani, S., Kamat, P.V., (2002) J. Phys. Chem., B, 106, p. 18Spanhel, L., Haase, M., Weller, H., Henglein, A., (1987) J. Am. Chem. Soc., 109, p. 5649Hirai, T., Okubo, H., Komasawa, I., (1999) J. Phys. Chem., B, 103, p. 4228Chae, W.S., Ko, J.H., Hwang, I.W., Kim, Y.R., (2002) Chem. Phys. Lett., 365, p. 49Orii, T., Kaito, S., Matsuishi, K., Onari, S., Arai, T., (2002) J. Phys.: Condens. Matter, 14, p. 9743Protiere, M., Reiss, P., (2006) Nanoscale Res. Lett., 1, p. 62Uda, H., Yonezawa, H., Ohtsubo, Y., Kosoka, M., Sonomura, H., (2003) Sol. Energy Mater. Sol. Cells, 75, p. 219Youn, H.C., Baral, S., Fendler, J.H., (1988) J. Phys. Chem., 92, p. 6320Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E., (1990) J. Am. Chem. Soc., 112, p. 1327Danek, M., Jensen, K.F., Murray, C.B., Bawendi, M.G., (1996) Chem. Mater., 8, p. 173Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., Brus, L.E., (1993) J. Phys. Chem., 97, p. 1224Wilson, W.L., Szajowski, P.J., Brus, L.E., (1993) Science, 262, p. 1242Hines, M.A., Guyot-Sionnest, P., (1996) J. Phys. Chem., 100, p. 468Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., (1997) J. Phys. Chem. B, 101, p. 9463Murray, C.B., Kagan, C.R., Bawendi, M.G., (1995) Science, 270, p. 1335Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., (1996) Nature, 382, p. 607Santos, M.J.L., Girotto, E.M., (2009) J. Braz. Chem. Soc., 20, p. 229Tsekouras, G., Too, C.O., Wallace, G.G., (2005) Electrochim. Acta, 50, p. 3224Trindade, T., OBrien, P., Zhang, X.M., (1997) Chem. Mater., 9, p. 523Malik, M.A., OBrien, P., Revaprasadu, N., (2002) Chem. Mater., 14, p. 2004Steckel, J.S., Zimmer, J.P., Coe-Sullivan, S., Stott, N.E., Bulovic, V., Bawendi, M.G., (2004) Angew. Chem., Int., 43, p. 2154Wang, L.-W., Zunger, A., (1996) Phys. Rev., B, 53, p. 9579Stirling, A., Pasquarello, A., Charlier, J.-C., Car, R., (2000) Phys. Rev. Lett., 85, p. 2773Fahrenbruch, A.L., Bube, R.H., (1983) Fundamentals of solar cells, , Academic PressEran, G., Fernando, P., Itamar, W., (2004) J. Phys. Chem., B, 108, p. 5875Turner, J.A., (1983) J. Chem. Educ., 60, p. 327Finklea, H., (1988) Semiconductors Electrodes, , Elsevier, New YorkNogueira, A.F., Montanari, I., Nelson, J., Brabec, C., Sariciftci, N.S., Durrant, J.R., (2003) J. Phys. Chem., B, 107, p. 1567Glenis, S., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 122, p. 9Nozik, A.J., (1978) Ann. Rev. Phys. Chem., 29, p. 189Ginger, D.S., Greenham, N.C., (1999) Phys. Rev., B, 59, p. 10622Sariciftci, N.S., Heeger, A.J., (1997) Handbook of conductive molecules and polymers, , Nalwa H.S. (Ed), John Wiley and Sons, New YorkCheng, J., Wang, S., Li, X., Yan, Y., Yang, S., Yang, C.L., Wang, J.N., Ge, W.K., (2001) Chem. Phys. Lett., 333, p. 375Fahrenbruch, A.L., Bube, R.H., (1983) Fundamentals of Solar Cells, , Academic Pres

    Electrochemical And Electrochromic Properties Of Poly(4,4″ Dimethoxy 3′-methyl 2,2′:5′,2″ Terthiophene)

    No full text
    This work describes the electrochemical, spectroelectrochemical and electrochromic properties of poly(4,4″ dimethoxy 3′-methyl 2,2′:5′,2″ terthiophene) thin films. The effect of temperature on the electropolymerization was studied by cyclic voltammetry measured in situ. The temperatures used were -10, 0, 10, 20, and 40°C. Results indicate that the electropolymerization temperature directly affect the degree of chain organization. The optical response time for bleaching was 0.8 s and for coloring 0.3 s (for films synthesized at 40°C, 60 nm thick). After 1400 electrochromic cycles, the chromatic contrast at 570 nm changes from 31 to 14%. The coloration efficiency was enhanced as a function of redox cycling. This was probably caused by a decrease in the injected charge necessary for the color change, suggesting that the electroactive losses occurring during the cycles are related to sites not responsible for electrochromic contrast. ©2005 Sociedade Brasileira de Química.164733738Roncali, J., (1992) Chem. Rev., 92, p. 711Tourillon, G., Garnier, F., Lemaire, M., (1982) J. Electroanal Chem., 135, p. 173Pomerantz, M., (1998) Handbook of Conducting Polymers, , Skotheim, T. A.Elsenbaumer, R. L.Reynolds, J. R., eds.Marcel Dekker: New York, ch. 11Roncali, J., (1997) Chem. Rev., 97, p. 173Andersson, M.R., Thomas, O., Mammo, W., Svensson, M., Theander, M., Inganäs, O., (1999) J. Mater. Chem., 9, p. 1993Tsivgoulis, G.M., Lehn, J.M., (1997) Adv. Mater., 9, p. 39Andersson, M.R., Berggren, M., Gustafsson, G., Hjertberg, T., Inganäs, O., Wennerström, O., (1995) Synth. Met., 71, p. 2183Granström, M., (1997) Polym. Adv. Technol., 8, p. 424Granlund, T., Theander, M., Berggren, M., Andresson, M., Ruzeckas, A., Sundström, V., Björk, G., Inganäs, O., (1988) Chem. Phys. Lett., 288, p. 879Mazeca, M., Cittibabu, K.G., Kim, J., Kumar, J., Jain, A., Kim, W., Tripathy, S.K., (1998) Synth. Met., 98, p. 45Tsumura, A., Ando, T., Koezuka, H., (1986) Appl. Phys. Lett., 49, p. 1210Bao, Z., Lovinger, A.J., (1999) Chem. Mater., 11, p. 2607De Melo, C.P., Dos Santos, C.G., Silva, A.M.S., Dos Santos, F.L., De Souza, J.E.G., (2002) Mol. Cryst. Liq. Cryst., 374, p. 543Gallazzi, M.C., Tassoni, L., Bertarelli, C., Pioggia, G., Di Francesco, F., Montoneri, E., (2003) Sens. Actuators B, 88, p. 178Zotti, G., Gallazzi, M.C., Zerbi, G., Meille, S.V., (1995) Synth. Met., 73, p. 217Yamamoto, T., Sanechika, K., Yamamoto, A.J., (1980) J. Polym. Sci. Polym. Lett., 18, p. 9Tourillon, G., (1986) Handbook of Conducting Polymers, p. 293. , Skotheim T. A.Elsenbaumer, R. L.Reynolds, J. R., eds.Marcel Dekker: New YorkCasalbore-Miceli, G., Camaioni, N., Gallazzi, M.C., Albertin, L., Fichera, A.M., Geri, A., Girotto, E.M., (2002) Synth. Met., 125, p. 307Ribeiro, A.S., Gazotti, W.A., Santos Filho, P.F., De Paoli, M.-A., (2004) Synth. Met., 145, p. 43Ives, D.J.G., Janz, G.J., (1961) Reference Electrodes. Theory and Practice, p. 189. , Academic Press: New YorkBates, R.G., Bower, V.E., (1954) J. Research Natl. Bur. Standards, 53, p. 282Doblhofer, K., Rajeshwar, K., (1998) Handbook of Conducting Polymers, , Skotheim, T. A.Elsenbaumer, R. L.Reynolds, J. R., eds.Marcel Dekker: New York, ch. 25Zotti, G., (1997) Handbook of Organic Conductive Molecules and Polymers, 2, p. 137. , Nalwa, H. S., ed.Wiley: New YorkRoncali, J., Yassar, A., Garnier, F., (1998) J. Chem. Soc., Chem. Commun., p. 581Glenis, S., Horowitz, G., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 111, p. 93Yassar, A., Roncali, J., Garnier, F., (1989) Macromolecules, 22, p. 804Camaioni, N., Casalbore-Miceli, G., Beggiato, G., Cristani, M., Summonte, C., (2000) Thin Solid Films, 366, p. 211Girotto, E.M., Camaioni, N., Casalbore-Miceli, G., De Paoli, M.-A., Fichera, A.M., Gallazzi, M.C., (2001) J. Appl. Electrochem., 31, p. 335Casalbore-Miceli, G., Camaioni, N., Fattori, V., Fichera, A.M., Gallazzi, M.C., Geri, A., Girotto, E.M., Giro, G., (2001) Synth. Met., 121, p. 1575Girotto, E.M., Casalbore-Miceli, G., Camaioni, N., De Paoli, M.-A., Fichera, A.M., Belobrzeckaja, L., Gallazzi, M.C., (2001) J. Mater. Chem., 11, p. 1072Rughooputh, S.D.D.V., Nowak, M., Hotta, S., Heeger, A.J., Wudl, F., (1987) Macromolecules, 20, p. 212De Paoli, M.-A., Casalbore-Miceli, G., Girotto, E.M., Gazotti, W.A., (1999) Electrochim, Acta, 44, p. 2983Hotta, S., (1997) Handbook of Organic Conductive Molecules and Polymers, 2, p. 309. , Nalwa, H. S., ed.Wiley: New YorkGazotti, W.A., De Paoli, M.-A., Casalbore-Miceli, G., Geri, A., Zotti, G., (1999) J. Appl. Electrochem., 29, p. 753Monk, P.M.S., Mortimer, R.J., Rosseinsky, D.R., (1995) Electrochromism: Fundamentals and Applications, , VCH: WeinheimGazotti, W.A., Nogueira, A.F., Girotto, E.M., Micaroni, L., Martini, M., Neves, S., De Paoli, M.-A., (2001) Handbook of Advanced Electronic and Photonic Materials and Devices, 10. , Nalwa, H. S., ed.Academic Press: San Diego, ch. 2Abraham, K.M., (1993) Applications of Electroactive Polymers, , Scrosati, B., ed.,. Chapman & Hall: London, ch. 3;Scrosati, B., Applications of Electroactive Polymers, , ch. 7Mastragostino, M., Applications of Electroactive Polymers, , ch.

    XMM-Newton first-light observations of the Hickson galaxy group 16

    Get PDF
    This paper presents the XMM-Newton first-light observations of the Hickson-16 compact group of galaxies. Groups are possibly the oldest large-scale structures in the Universe, pre-dating clusters of galaxies, and are highly evolved. This group of small galaxies, at a redshift of 0.0132 (or 80 Mpc) is exceptional in the having the highest concentration of starburst or AGN activity in the nearby Universe. So it is a veritable laboratory for the study of the relationship between galaxy interactions and nuclear activity. Previous optical emission line studies indicated a strong ionising continuum in the galaxies, but its origin, whether from starbursts, or AGN, was unclear. Combined imaging and spectroscopy with the EPIC X-ray CCDs unequivocally reveals a heavily obscured AGN and a separately identified thermal (starburst) plasma, in NGC 835, NGC 833, & NGC 839. NGC 838 shows only starburst thermal emission. Starbursts and AGN can evidently coexist in members of this highly evolved system of merged and merging galaxies, implying a high probability for the formation of AGN as well as starbursts in post-merger galaxies
    corecore