58,119 research outputs found

    Dynamical instabilities in density-dependent hadronic relativistic models

    Full text link
    Unstable modes in asymmetric nuclear matter (ANM) at subsaturation densities are studied in the framework of relativistic mean-field density-dependent hadron models. The size of the instabilities that drive the system are calculated and a comparison with results obtained within the non-linear Walecka model is presented. The distillation and anti-distillation effects are discussed.Comment: 8 pages, 8 Postscript figures. Submitted for publication in Phys. Rev.

    Loading of a Bose-Einstein condensate in the boson-accumulation regime

    Full text link
    We study the optical loading of a trapped Bose-Einstein condensate by spontaneous emission of atoms in excited electronic state in the Boson-Accumulation Regime. We generalize the previous simplified analysis of ref. [Phys. Rev. A 53, 2466 (1996)], to a 3D case in which more than one trap level of the excited state trap is considered. By solving the corresponding quantum many-body master equation, we demonstrate that also for this general situation the photon reabsorption can help to increase the condensate fraction. Such effect could be employed to realize a continuous atom laser, and to overcome condensate losses.Comment: 7 pages, 5 eps figures, uses epl.st

    An Adult with Episodic Abnormal Limb Posturing

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Quantum interference-induced stability of repulsively bound pairs of excitations

    Full text link
    We study the dynamics of two types of pairs of excitations which are bound despite their strong repulsive interaction. One corresponds to doubly occupied sites in one-dimensional Bose-Hubbard systems, the so-called doublons. The other is pairs of neighboring excited spins in anisotropic Heisenberg spin-1/2 chains. We investigate the possibility of decay of the bound pairs due to resonant scattering by a defect or due to collisions of the pairs. We find that the amplitudes of the corresponding transitions are very small. This is a result of destructive quantum interference and explains the stability of the bound pairs.Comment: 12 pages, 3 figure

    A "diamond-ring" star: the unusual morphologic structure of a young (multiple?) object

    Full text link
    We have observed IRAS06468-0325 obtaining optical and infrared images through IJHKs and L' filters, K-band low-resolution spectroscopy, together with millimetre line observations of CO and CS. IRAS06468-0325 has a very unusual and enigmatic morphology with two components: a bright, close to point-like source (the diamond) and a sharp-edge ring-like structure (the ring). The source is not detected in the optical, at wavelengths shorter than the I-band. The diamond is seen in all the imaging bands observed. The ring-like structure in IRAS06468-0325 is clearly seen in the I, J, H, and Ks. It is not detected in the L'-band image. Infrared colours of the diamond are compatible with excess circumstellar emission and a young stellar nature. A strongly non-gaussian and moderately bright CO(1-0) and {13}CO(2-1) lines are seen towards IRAS06468-0325, at v_{LSR} of 30.5 km s{-1} (corresponding to a kinematic distance of 3 kpc). Very weak C{18}O(2-1) and CS(2-1) lines were detected. K-band spectra of the diamond and of the ring are similar both in the slope of the continuum and in the presence of lines supporting the idea that the ring is reflected light from the diamond. With the current data, a few different scenarios are possible to explain the morphology of this object. However, the available data seem to favour that the morphology of IRAS06468-0325 correspond to a young stellar multiple system in a transient stage where a binary co-exists with a circumbinary disc, similar to the case of GG Tau. In this case, the sharpness of the well-defined ring may be due to tidal truncation from dynamic interactions between components in a binary or multiple stellar system. IRAS06468-0325 may be an important rare case that illustrates a short-lived stage of the process of binary or multiple star formation.Comment: 7 pages, 6 figure

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page

    Deformation method for generalized Abelian Higgs-Chern-Simons models

    Get PDF
    We present an extension of the deformation method applied to self-dual solutions of generalized Abelian Higgs-Chern-Simons models. Starting from a model defined by a potential V(∣ϕ∣)V(| \phi |) and a non-canonical kinetic term ω(∣ϕ∣)∣Dμϕ∣2\omega(| \phi |) | D_{\mu}\phi |^2 whose analytical domain wall solutions are known, we show that this method allows to obtain an uncountable number of new analytical solutions of new models defined by other functions V~\widetilde{V} and ω~\widetilde{\omega}. We present some examples of deformation functions leading to new families of models and their associated analytic solutions.Comment: 6 pages, 10 figure
    • …
    corecore