49,511 research outputs found

    Are Stars with Planets Polluted?

    Get PDF
    We compare the metallicities of stars with radial velocity planets to the metallicity of a sample of field dwarfs. We confirm recent work indicating that the stars-with-planet sample as a whole is iron rich. However, the lowest mass stars tend to be iron poor, with several having [Fe/H]<-0.2, demonstrating that high metallicity is not required for the formation of short period Jupiter-mass planets. We show that the average [Fe/H] increases with increasing stellar mass (for masses below 1.25 solar masses) in both samples, but that the increase is much more rapid in the stars-with-planet sample. The variation of metallicity with stellar age also differs between the two samples. We examine possible selection effects related to variations in the sensitivity of radial velocity surveys with stellar mass and metallicity, and identify a color cutoff (B-V>0.48) that contributes to but does not explain the mass-metallicity trend in the stars-with-planets sample. We use Monte Carlo models to show that adding an average of 6.5 Earth masses of iron to each star can explain both the mass-metallicity and the age-metallicity relations of the stars-with-planets sample. However, for at least one star, HD 38529, there is good evidence that the bulk metallicity is high. We conclude that the observed metallicities and metallicity trends are the result of the interaction of three effects; accretion of about 6 Earth masses of iron rich material, selection effects, and in some cases, high intrinsic metallicity.Comment: 19 pages 11 figure

    Quantum Levy flights and multifractality of dipolar excitations in a random system

    Get PDF
    We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigen-energy spectra and the multifractal structure of the wavefunctions. In 1D and 2D all states are localized, although in 2D the localization length can be extremely large leading to an effective localization-delocalization crossover in realistic systems. In 3D all eigenstates are extended but not always ergodic, and we identify the energy intervals of ergodic and non-ergodic states. The reduction of the lattice filling induces an ergodic to non-ergodic transition, and the excitations are mostly non-ergodic at low filling.Comment: 5 pages, 6 figure

    Cosmology with intensity mapping techniques using atomic and molecular lines

    Get PDF
    We present a systematic study of the intensity mapping technique using updated models for the different emission lines from galaxies and identify which ones are more promising for cosmological studies of the post reionization epoch. We consider the emission of Lyα{\rm Ly\alpha}, Hα{\rm H\alpha}, Hβ\beta, optical and infrared oxygen lines, nitrogen lines, CII and the CO rotational lines. We then identify that Lyα{\rm Ly\alpha}, Hα{\rm H\alpha}, OII, CII and the lowest rotational CO lines are the best candidates to be used as IM probes. These lines form a complementary set of probes of the galaxies emission spectra. We then use reasonable experimental setups from current, planned or proposed experiments to access the detectability of the power spectrum of each emission line. Intensity mapping of Lyα{\rm Ly\alpha} emission from z=2z=2 to 3 will be possible in the near future with HETDEX, while far-infrared lines require new dedicated experiments. We also show that the proposed SPHEREx satellite can use OII and Hα{\rm H\alpha} IM to study the large-scale distribution of matter in intermediate redshifts of 1 to 4. We found that submilimeter experiments with bolometers can have similar performances at intermediate redshifts using CII and CO(3-2).Comment: 18 pages, 21 figures, 5 tables, published in MNRAS, typos correcte

    High resolution imaging of the early-type galaxy NGC 1380: an insight into the nature of extended extragalactic star clusters

    Get PDF
    NGC 1380 is a lenticular galaxy located near the centre of the Fornax Cluster northeast of NGC 1399. The globular cluster system of this galaxy was previously studied only from the ground. Recent studies of similar early-type galaxies, specially lenticular ones, reveal the existence of star clusters that apparently break up the traditional open/globular cluster dichotomy. With higher quality photometry from HST/WFPC2 we study the star clusters in NGC 1380, measuring their magnitudes, colours, sizes and projected distances from the centre of the galaxy. We used deep archival HST/WFPC2 in the B and V bands. We built colour magnitude diagrams from which we selected a sample of cluster candidates. We also analysed their colour distribution and measured their sizes. Based on their location in the luminosity-size diagram we estimated probabilities of them being typical globular clusters as those found in the Galaxy. A total of about 570 cluster candidates were found down to V=26.5. We measured sizes for approximately 200 of them. The observed colour distribution has three apparent peaks. Likewise for the size distribution. We identified the smaller population as being mainly typical globular clusters, while the more extended objects have small probabilities of being such objects. Different correlations between absolute magnitudes, sizes, colours and location were inferred for these cluster sub-populations. Most extended clusters (Reff > 4 pc) share similar properties to the diffuse star clusters reported to inhabit luminous early-type galaxies in the Virgo galaxy cluster such as being of low surface brightness and fainter than MV ~ -8. We also report on a small group of (Reff ~ 10 pc), -8< MV < -6, red clusters located near the centre of NGC 1380, which may be interpreted as faint fuzzies.Comment: accepted for publication in A&

    When is the Haar measure a Pietsch measure for nonlinear mappings?

    Full text link
    We show that, as in the linear case, the normalized Haar measure on a compact topological group GG is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of C(G)C(G). This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed
    • …
    corecore