630 research outputs found
Hysteresis in an Ising model with mobile bonds
Hysteresis is studied in a disordered Ising model in which diffusion of
antiferromagnetic bonds is allowed in addition to spin flips. Saturation
behavior changes to a figure-eight loop when diffusion is introduced. The upper
and lower fields delimiting the figure-eight are determined by the Hamiltonian,
while its surface and the crossing point depend on the temperature and details
of the dynamics. The main avalanche is associated with the disappearance of
hidden order. Some experimental observations of figure-eight anomalies are
discussed. It is argued they are a signal of a transient rearrangement of
domain couplings, characteristic of amorphous and/or magnetically soft samples,
and similar to evolution of kinetic glasses.Comment: 7 pages, 7 figure
Vacuum solutions of the gravitational field equations in the brane world model
We consider some classes of solutions of the static, spherically symmetric
gravitational field equations in the vacuum in the brane world scenario, in
which our Universe is a three-brane embedded in a higher dimensional
space-time. The vacuum field equations on the brane are reduced to a system of
two ordinary differential equations, which describe all the geometric
properties of the vacuum as functions of the dark pressure and dark radiation
terms (the projections of the Weyl curvature of the bulk, generating non-local
brane stresses). Several classes of exact solutions of the vacuum gravitational
field equations on the brane are derived. In the particular case of a vanishing
dark pressure the integration of the field equations can be reduced to the
integration of an Abel type equation. A perturbative procedure, based on the
iterative solution of an integral equation, is also developed for this case.
Brane vacuums with particular symmetries are investigated by using Lie group
techniques. In the case of a static vacuum brane admitting a one-parameter
group of conformal motions the exact solution of the field equations can be
found, with the functional form of the dark radiation and pressure terms
uniquely fixed by the symmetry. The requirement of the invariance of the field
equations with respect to the quasi-homologous group of transformations also
imposes a unique, linear proportionality relation between the dark energy and
dark pressure. A homology theorem for the static, spherically symmetric
gravitational field equations in the vacuum on the brane is also proven.Comment: 13 pages, no figures, to appear in PR
Segregation by thermal diffusion of an intruder in a moderately dense granular fluid
A solution of the inelastic Enskog equation that goes beyond the weak
dissipation limit and applies for moderate densities is used to determine the
thermal diffusion factor of an intruder immersed in a dense granular gas under
gravity. This factor provides a segregation criterion that shows the transition
between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by
varying the parameters of the system (masses, sizes, density and coefficients
of restitution). The form of the phase-diagrams for the BNE/RBNE transition
depends sensitively on the value of gravity relative to the thermal gradient,
so that it is possible to switch between both states for given values of the
parameters of the system. Two specific limits are considered with detail: (i)
absence of gravity, and (ii) homogeneous temperature. In the latter case, after
some approximations, our results are consistent with previous theoretical
results derived from the Enskog equation. Our results also indicate that the
influence of dissipation on thermal diffusion is more important in the absence
of gravity than in the opposite limit. The present analysis extends previous
theoretical results derived in the dilute limit case [V. Garz\'o, Europhys.
Lett. {\bf 75}, 521 (2006)] and is consistent with the findings of some recent
experimental results.Comment: 10 figure
Ruthenocuprates RuSr2(Eu,Ce)2Cu2O10: Intrinsic magnetic multilayers
We report ac susceptibility data on RuSr_2(Eu,Ce)_2Cu_2O_(10-y) (Ru-1222, Ce
content x=0.5 and 1.0), RuSr_2GdCu_2O_8 (Ru-1212) and SrRuO_3. Both Ru-1222
(x=0.5, 1.0) sample types exhibit unexpected magnetic dynamics in low magnetic
fields: logarithmic time relaxation, switching behavior, and `inverted'
hysteresis loops. Neither Ru-1212 nor SrRuO_3 exhibit such magnetic dynamics.
The results are interpreted as evidence of the complex magnetic order in
Ru-1222. We propose a specific multilayer model to explain the data, and note
that superconductivity in the ruthenocuprate is compatible with both the
presence and absence of the magnetic dynamics.Comment: 9 pages, 11 figures, Revtex; submitted to Phys.Rev.
The role of proteomics in defining the human embryonic secretome
Non-invasive gamete and embryo assessment is considered an important focus in assisted reproductive technologies (ART). Currently, the selection of embryos for transfer is based on morphological indices. Though successful, the field of ART would benefit from a non-invasive quantitative method of viability determination. Omics technologies, including transcriptomics, proteomics and metabolomics, have already begun providing evidence that viable gametes and embryos possess unique molecular profiles with potential biomarkers that can be utilized for developmental and/or viability selection. Unlike the human genome that is relatively fixed and steady throughout the human body, the human proteome, estimated at over a million proteins, is more complex, diverse and dynamic. It is the proteins themselves that contribute to the physiological homeostasis in any cell or tissue. Of particular interest in ART is the secretome, those proteins that are produced within the embryo and secreted into the surrounding environment. Defining the human embryonic secretome has the potential to expand our knowledge of embryonic cellular processes, including the complex dialogue between the developing embryo and its maternal environment, and may also assist in identifying those embryos with the highest implantation potential. Advances in proteomic technologies have allowed the non-invasive profiling of the human embryonic secretome with ongoing research focused on correlation with outcome. From a clinical perspective, embryo selection based on morphological assessment and non-invasive analysis of the human embryonic secretome may improve IVF success and lead to routine single embryo transfers
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
- …