34,117 research outputs found

    Lower Mass Bound on the W′W^\prime mass via Neutrinoless Double Beta Decay in a 3-3-1 Model

    Full text link
    The discovery of neutrino masses has raised the importance of studies in the context of neutrinoless double beta decay, which constitutes a landmark for lepton number violation. The standard interpretation is that the light massive neutrinos, that we observed oscillating in terrestrial experiments, mediate double beta decay. In the minimal 3-3-1 model, object of our study, there is an additional contribution that stems from the mixing between a new charged vector boson, W′W^{\prime}, and the Standard Model W boson. Even after setting this mixing to be very small, we show that tight constraints arise from the non-observation of neutrinoless double beta decay. Indeed, we derive bounds on the mass of the W′W^{\prime} gauge boson that might exceed those from collider probes, and most importantly push the scale of symmetry breaking beyond its validity, leading to the exclusion of the minimal 3-3-1 model.Comment: 16 pages, 5 figure

    Vector constants of motion for time-dependent Kepler and isotropic harmonic oscillator potentials

    Get PDF
    A method of obtaining vector constants of motion for time-independent as well as time-dependent central fields is discussed. Some well-established results are rederived in this alternative way and new ones obtained.Comment: 18 pages, no figures, regular Latex article forma

    Collider Detection of Dark Matter Electromagnetic Anapole Moments

    Get PDF
    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly as well as weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-ZZ signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.Comment: 24 pages, 9 figure

    Static, spherically symmetric solutions with a scalar field in Rastall gravity

    Full text link
    Rastall's theory belongs to the class of non-conservative theories of gravity. In vacuum, the only non-trivial static, spherically symmetric solution is the Schwarzschild one, except in a very special case. When a canonical scalar field is coupled to the gravity sector in this theory, new exact solutions appear for some values of the Rastall parameter aa. Some of these solutions describe the same space-time geometry as the recently found solutions in the kk-essence theory with a power function for the kinetic term of the scalar field. There is a large class of solutions (in particular, those describing wormholes and regular black holes) whose geometry coincides with that of solutions of GR coupled to scalar fields with nontrivial self-interaction potentials; the form of these potentials, however, depends on the Rastall parameter aa. We also note that all solutions of GR with a zero trace of the energy-momentum tensor, including black-hole and wormhole ones, may be re-interpreted as solutions of Rastall's theory.Comment: Latex file, 18 pages. To fit published versio
    • …
    corecore