31,019 research outputs found

    Lower Mass Bound on the WW^\prime mass via Neutrinoless Double Beta Decay in a 3-3-1 Model

    Full text link
    The discovery of neutrino masses has raised the importance of studies in the context of neutrinoless double beta decay, which constitutes a landmark for lepton number violation. The standard interpretation is that the light massive neutrinos, that we observed oscillating in terrestrial experiments, mediate double beta decay. In the minimal 3-3-1 model, object of our study, there is an additional contribution that stems from the mixing between a new charged vector boson, WW^{\prime}, and the Standard Model W boson. Even after setting this mixing to be very small, we show that tight constraints arise from the non-observation of neutrinoless double beta decay. Indeed, we derive bounds on the mass of the WW^{\prime} gauge boson that might exceed those from collider probes, and most importantly push the scale of symmetry breaking beyond its validity, leading to the exclusion of the minimal 3-3-1 model.Comment: 16 pages, 5 figure

    ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC

    Get PDF
    We present the first version of a new tool to scan the parameter space of generic scalar potentials, ScannerS. The main goal of ScannerS is to help distinguish between different patterns of symmetry breaking for each scalar potential. In this work we use it to investigate the possibility of excluding regions of the phase diagram of several versions of a complex singlet extension of the Standard Model, with future LHC results. We find that if another scalar is found, one can exclude a phase with a dark matter candidate in definite regions of the parameter space, while predicting whether a third scalar to be found must be lighter or heavier. The first version of the code is publicly available and contains various generic core routines for tree level vacuum stability analysis, as well as implementations of collider bounds, dark matter constraints, electroweak precision constraints and tree level unitarity.Comment: 24 pages, 4 figures, 3 tables. Project development webpage - http://gravitation.web.ua.pt/Scanner

    NLO electroweak corrections in general scalar singlet models

    Full text link
    If no new physics signals are found, in the coming years, at the Large Hadron Collider Run-2, an increase in precision of the Higgs couplings measurements will shift the dicussion to the effects of higher order corrections. In Beyond the Standard Model (BSM) theories this may become the only tool to probe new physics. Extensions of the Standard Model (SM) with several scalar singlets may address several of its problems, namely to explain dark matter, the matter-antimatter asymmetry, or to improve the stability of the SM up to the Planck scale. In this work we propose a general framework to calculate one loop-corrections in BSM models with an arbitrary number of scalar singlets. We then apply our method to a real and to a complex scalar singlet models. We assess the importance of the one-loop radiative corrections first by computing them for a tree level mixing sum constraint, and then for the main Higgs production process ggHgg \to H. We conclude that, for the currently allowed parameter space of these models, the corrections can be at most a few percent. Notably, a non-zero correction can survive when dark matter is present, in the SM-like limit of the Higgs couplings to other SM particles.Comment: 35 pages, 3 figure

    Wrong sign and symmetric limits and non-decoupling in 2HDMs

    Get PDF
    We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These \textit{wrong signs} can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the \textit{symmetric limit}, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1σ\sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tanβ\tan \beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.Comment: 20 pages, 15 figure

    Flavour changing strong interaction effects on top quark physics at the LHC

    Full text link
    We perform a model independent analysis of the flavour changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model.Comment: Authors corrections (references added

    The Casimir spectrum revisited

    Get PDF
    We examine the mathematical and physical significance of the spectral density sigma(w) introduced by Ford in Phys. Rev. D38, 528 (1988), defining the contribution of each frequency to the renormalised energy density of a quantum field. Firstly, by considering a simple example, we argue that sigma(w) is well defined, in the sense of being regulator independent, despite an apparently regulator dependent definition. We then suggest that sigma(w) is a spectral distribution, rather than a function, which only produces physically meaningful results when integrated over a sufficiently large range of frequencies and with a high energy smooth enough regulator. Moreover, sigma(w) is seen to be simply the difference between the bare spectral density and the spectral density of the reference background. This interpretation yields a simple `rule of thumb' to writing down a (formal) expression for sigma(w) as shown in an explicit example. Finally, by considering an example in which the sign of the Casimir force varies, we show that the spectrum carries no manifest information about this sign; it can only be inferred by integrating sigma(w).Comment: 10 pages, 4 figure

    The CP-conserving 2HDM after the 8 TeV run

    Full text link
    We confront the most common CP-conserving 2HDM with the LHC data analysed so far while taking into account all previously available experimental data. A special allowed corner of the parameter space is analysed - the so-called wrong-sign scenario where the Higgs coupling to down-type quarks changes sign relative to the Standard Model while the coupling to the massive vector bosons does not.Comment: 6 pages, 2 figures, to appear in the proceedings of the 22nd International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2014), 28 April - 2 May 2014 Warsaw (Poland

    The Wrong Sign limit in the 2HDM

    Full text link
    A sign change in the Higgs couplings to fermions and massive gauge bosons is still allowed in the framework of two-Higgs doublet models (2HDM). In this work we discuss the possible sign changes in the Higgs couplings to fermions and gauge bosons, while reviewing the status of the 8-parameter CP-conserving 2HDM after the Large Hadron Collider 8 TeV run.Comment: 6 pages, 3 figures. Proceedings of the Second Annual Conference on Large Hadron Collider Physics, Columbia University, New York, U.S.A, June 2-7, 2014. arXiv admin note: text overlap with arXiv:1407.439
    corecore