353 research outputs found
Extension of effort for lunar flight handbook detailed technical report
Lunar flight handbook - orbital departure windows, libration points, and lunar flight orbit estimation, theory, and operation
Implementing an ecosystem oceanography program to increase capacity and preparedness for dynamic ocean management and fishery challenges
Building resilience in coastal resources and related communities is improved by a holistic ecosystem research approach for integrating socioecological system components; a key challenge in this process is capturing dynamic interactions between components. We present an application of ecosystem oceanography to address goals of marine conservation and management, including climate readiness and supporting a blue economy. Treating the ecosystem as the sample unit is fundamental to our research program. Specifically, spatiotemporal structure of relationships among taxa themselves is the study subject, not the individual members. Our approach outlines four steps toward successful implementation: 1) Build a conceptual ecosystem-oceanography model informed by previous science and human dimensions research to test hypotheses and identify gaps in our understanding; 2) Design survey and adaptive monitoring efforts, including data sharing protocols, to capture the spatiotemporal processes of ecosystem structure; 3) Use diet data and spatiotemporal variability in trophic interactions to quantify processes influencing ecosystem function, including persistent hotspots of abundance, biodiversity, and trophic transfer; 4) Link empirically-determined processes to improve parameterization of biophysical models to enable evaluation of ecosystem structure and functionality retrospectively and prospectively. Accomplishing these objectives requires a transdisciplinary team and will enable evaluation of specific management goals, develop indicators for tracking progress towards meeting them, and carry out scenario evaluation under near-term and long-term scenarios that explore key uncertainties (e.g., future climate and policy directions). We apply this four-step approach to identify key drivers for recent ecosystem and fishery surprises in the California Current Ecosystem. We propose this approach offers a means for anticipating future ecosystem states and increasing preparedness and capacity to overcome fishery surprises, and in doing so supporting the development of management approaches that are robust to uncertainty
Acute bottlenecks to the survival of juvenile <i>Pygoscelis</i> penguins occur immediately after fledging
Estimating when and where survival bottlenecks occur in free-ranging marine predators is critical for effective demographic monitoring and spatial planning. This is particularly relevant to juvenile stages of long-lived species for which direct observations of death are typically not possible. We used satellite telemetry data from fledgling Adelie, chinstrap and gentoo penguins near the Antarctic Peninsula to estimate the spatio-temporal scale of a bottleneck after fledging. Fledglings were tracked up to 106 days over distances of up to 2140 km. Cumulative losses of tags increased to 73% within 16 days of deployment, followed by an order-of-magnitude reduction in loss rates thereafter. The timing and location of tag losses were consistent with at-sea observations of penguin carcasses and bioenergetics simulations of mass loss to thresholds associated with low recruitment probability. A bootstrapping procedure is used to assess tag loss owing to death versus other factors. Results suggest insensitivity in the timing of the bottleneck and quantify plausible ranges of mortality rates within the bottleneck. The weight of evidence indicates that a survival bottleneck for fledgling penguins is acute, attributable to predation and starvation, and may account for at least 33% of juvenile mortality.Facultad de Ciencias Naturales y Muse
Alterations in Content and Localization of Defensins in Rat Ileum and Jejunum Following Ischemia-Reperfusion. Specific Peptides, in Specific Places, for Specific Jobs?
Objective: To determine alterations in quantities and distributions of natural antimicrobials following ischemia-reperfusion injury. We hypothesized that these compounds would be upregulated in areas of small intestine where changes in permeability and cellular disruption were likely and where protective mechanisms would be initiated. Methods: Rats with ischemia-reperfusion underwent superior mesenteric artery clamping and reperfusion. Shams were subjected to laparotomy but no clamping. Ileum and jejunum were harvested and sectioned, and subjected to fluorescence deconvolution microscopy for determinations of content and localization of rat beta defensins, 1, 2, 3; rat neutrophil protein-1; and cathelicidin LL-37. Modeling was performed to determine cellular location of antimicrobials. Results: Ischemia-reperfusion increased neutrophil defensin alpha (RNP-1) in jejunum; rat beta defensin 1 was increased 2-fold in ileal mucosa and slightly reduced in jejunal mucosa; rat beta defensin 2 was reduced by ischemia-reperfusion in ileum, but slightly increased in jejunum; rat beta defensin 3 was concentrated in the muscularis externa and myenteric plexus of the jejunum; ischemia-reperfusion did not alter cathelicidin LL-37 content in the small intestine, although a greater concentration was seen in jejunum compared with ileum. Conclusion: Ischemia-reperfusion injury caused changes in antimicrobial content in defined areas, and these different regulations might reflect the specific roles of jejunum versus ileum
Recommended from our members
Trophic guilds of marine predators in the California Current Large Marine Ecosystem
Quantifying trophic relationships of marine species is fundamental to the construction and performance of ecosystem models, development of effective ecosystem-based fisheries management strategies, and support of trait-based approaches to ecological risk assessment. Accounting for food web dynamics in taxonomically diverse ecosystems, such as the California Current Large Marine Ecosystem (CCLME), is especially challenging because of the sheer number of trophic linkages and their inherent variability. Consequently, analyses that can inform the most appropriate means of aggregating species or other taxonomic groups into assemblages or guilds are critical to reducing system complexity for modeling and management, particularly when data are limited. To provide a methodological approach that is globally applicable in such cases, we define trophic guilds within biogeographic regions of the CCLME, compare results among these regions, and discuss ecological and management implications. Within each biogeographic region, predator guilds were clearly demarcated by foraging habitat (benthic, nearshore pelagic, offshore pelagic), scale of foraging movements, and trophic position. Furthermore, trophic guilds were distinctive for each region, with species composition and the noted ecological characteristics largely driving guild structure. Predator species that are reliant on continental slope and offshore foraging habitat, such as adult Pacific Hake, have diets that are representative of these areas and are similar throughout the CCLME. Generally, larger, more mobile predators that typically feed in deeper offshore waters, including swordfish, sea lions, and sharks clustered together in multiple bioregions along the coast; all reliant primarily on fishes and squids. Throughout bioregions, groundfishes preyed on benthic invertebrates (e.g., decapods, amphipods, polychaetes), while shelf-oriented pelagic predators, including smaller salmon, preyed on pelagic invertebrates (e.g., euphausiids, copepods, gelatinous zooplankton). A large number of forage taxa that are well represented in this study have dynamics largely dependent on oceanographic conditions at a regional scale (e.g., decapods), basin scale (e.g., copepods), or a combination of both (e.g., euphausiids, Northern Anchovy). Such distinctions indicate that spatial and temporal scales of coherence of predators and prey also must be considered in development of ecosystem models and evaluation of management strategies. Our study quantifies the spatial coherence of predator guilds integrated over decades within and across bioregions of the CCLME, providing an improved understanding of regional ecosystem functioning. The analytical approach we developed may be easily extended to address similar ecological and ecosystem based fisheries management priorities in other marine regions
Therapeutic distant organ effects of regional hypothermia during mesenteric ischemia-reperfusion injury
IntroductionMesenteric ischemia-reperfusion injury (IRI) leads to systemic inflammation and multiple organ failure in clinical and laboratory settings. We investigated the lung structural, functional, and genomic response to mesenteric IRI with and without regional intraischemic hypothermia (RIH) in rodents and hypothesized that RIH would protect the lung and preferentially modulate the distant organ transcriptome under these conditions.MethodsSprague-Dawley rats underwent sham laparotomy or superior mesenteric artery occlusion (SMAO) for 60 minutes with or without RIH. Gut temperature was maintained at 15°-20°C during SMAO, and systemic normothermia (37°C) was maintained throughout the study period. At 6 or 24 hours, lung tissue was collected for (1) histology, (2) myeloperoxidase activity, (3) bronchoalveolar lavage (BAL) fluid protein concentrations, (4) lung wet/dry ratios, and (5) total RNA isolation and hybridization to Illumina's Sentrix BeadChips (>22,000 probes) for gene expression profiling. Significantly affected genes (false discovery rate <5% and fold change âĽ1.5) were linked to gene ontology (GO) terms using MAPPFinder, and hypothermia-suppressed genes were further analyzed with Pubmatrix.ResultsMesenteric IRI-induced lung injury, as evidenced by leukocyte trafficking, alveolar hemorrhage, and increased BAL protein and wet/dry ratios, and activated a proinflammatory lung transcriptome compared with sham. In contrast, rats treated with RIH exhibited lung histology, BAL protein, and wet/dry ratios similar to sham. At 6 hours, GO analysis identified 232 hypothermia-suppressed genes related to inflammation, innate immune response, and cell adhesion, and 33 hypothermia-activated genes related to lipid and amine metabolism and defense response. Quantitative real-time polymerase chain reaction validated select array changes in top hypothermia-suppressed genes lipocalin-2 (lcn-2) and chemokine ligand 1 (CXCL-1), prominent genes associated with neutrophil activation and trafficking.ConclusionsTherapeutic hypothermia during SMAO provides distant organ protection and preferentially modulates the IRI-activated transcriptome in the rat lung. This study identifies potential novel diagnostic and therapeutic targets of mesenteric IRI and provides a platform for further mechanistic study of hypothermic protection at the cellular and subcellular level.Clinical RelevanceVisceral organ ischemia-reperfusion injury (IRI) is a common clinical problem in the settings of shock, sepsis, vascular surgery, and organ transplantation and is a particularly vexing problem in the repair of complex aortic aneurysms. IRI is associated with considerable patient morbidity and mortality, for which there are virtually no therapeutic options. It systematically causes local organ injury and dysfunction, systemic inflammation, and multiple organ failure. Clinical trials investigating the efficacy of pharmacologic blockade of individual downstream inflammatory mediators in critically ill patients have been largely unsuccessful, and such studies highlight the need for novel top-down approaches, such as gene expression profiling for biologic discovery, as well as application of broader therapeutic interventions, such as targeted hypothermia. In this study, we demonstrate the potential application of visceral cooling for distant organ protection during mesenteric IRI, identify broad changes in lung gene expression under these conditions, and have elucidated potential novel diagnostic and therapeutic targets for disease targeting
- âŚ