12,217 research outputs found

    Phase diagram of Landau-Zener phenomena in coupled one-dimensional Bose quantum fluids

    Full text link
    We study stationary and dynamical properties of the many-body Landau-Zener dynamics of a Bose quantum fluid confined in two coupled one-dimensional chains, using a many-body generalization recently reported [Y.-A. Chen et al.], within the decoupling approximation and the one-level band scheme. The energy spectrum evidences the structure of the avoided level crossings as a function of the on-site inter particle interaction strength. On the dynamical side, a phase diagram of the transfer efficiency across ground-state and inverse sweeps is presented. A totally different scenario with respect to the original single-particle Landau-Zener scheme is found for ground-state sweeps, in which a breakdown of the adiabatic region emerges as the sweep rate decreases. On the contrary, the transfer efficiency across inverse sweeps reveals consistent results with the single-particle Landau-Zener predictions. In the strong coupling regime, we find that there is a critical value of the on-site interaction for which the transfer of particles starts to vanish independently of the sweep rate. Our results are in qualitative agreement with those of the experimental counterpart.Comment: 15 pages, submitted to Phys. Rev. A (new version

    Investigating Diversity in the Banking Sector in Europe: The Performance and Role of Savings Banks. CEPS Paperbacks. June 2009

    Get PDF
    In the aftermath of the financial crisis, the foundations of modern and innovative financial systems developed over decades have suffered serious damage. This has triggered massive state interventions and has led authorities to revamp the regulatory structures and frameworks. While many voices have called for a return to more traditional approaches to banking and finance, no one has argued the merits of diversity. This book investigates the merits of a diverse banking system with a special focus on the performance and role of savings banks in selected European countries where they are still prominent (Austria, Germany and Spain) and where they have progressively disappeared (Belgium and Italy). The theoretical and empirical arguments that are developed in this book tend to support the view that it is economically and socially beneficial to have ‘dual bottom-line’ institutions, such as savings banks. For those who accept this premise, it would suggest that policy-makers should not take or support actions that could jeopardise this valuable element of the financial system in various countries in Europe and of the emerging integrated European financial system

    On the excitation of inertial modes in an experimental spherical Couette flow

    Full text link
    Spherical Couette flow (flow between concentric rotating spheres) is one of flows under consideration for the laboratory magnetic dynamos. Recent experiments have shown that such flows may excite Coriolis restored inertial modes. The present work aims to better understand the properties of the observed modes and the nature of their excitation. Using numerical solutions describing forced inertial modes of a uniformly rotating fluid inside a spherical shell, we first identify the observed oscillations of the Couette flow with non-axisymmetric, retrograde, equatorially anti-symmetric inertial modes, confirming first attempts using a full sphere model. Although the model has no differential rotation, identification is possible because a large fraction of the fluid in a spherical Couette flow rotates rigidly. From the observed sequence of the excited modes appearing when the inner sphere is slowed down by step, we identify a critical Rossby number associated with a given mode and below which it is excited. The matching between this critical number and the one derived from the phase velocity of the numerically computed modes shows that these modes are excited by an instability likely driven by the critical layer that develops in the shear layer staying along the tangent cylinder of the inner sphere.Comment: 11 pages, 17 figure

    Analytic Reconstruction of heavy-quark two-point functions at O(\alpha_s^3)

    Full text link
    Using a method previously developed, based on the Mellin-Barnes transform, we reconstruct the two-point correlators in the vector, axial, scalar and pseudoscalar channels from the Taylor expansion at q^2=0, the threshold expansion at q^2=4m^2 and the OPE at q^2\rightarrow -\infty, where m is the heavy quark mass. The reconstruction is analytic and systematic and is controlled by an error function which becomes smaller as more terms in those expansions are known.Comment: 19 pages, 11 figure

    Radio observations of evaporating objects in the Cygnus OB2 region

    Get PDF
    We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at frequencies of 325 and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating evaporating gas globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.Fil: Isequilla, Natacha Laura. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Benaglia, Paula. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Ishwara Chandra, C. H.. National Center For Radio Astrophysics; IndiaFil: del Palacio, Santiago. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    Homology and symmetry breaking in Rayleigh-Benard convection: Experiments and simulations

    Full text link
    Algebraic topology (homology) is used to analyze the weakly turbulent state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Benard convection.The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present.Comment: 21 pages with 6 figure
    corecore