31,119 research outputs found

    On the distribution of the total energy of a system on non-interacting fermions: random matrix and semiclassical estimates

    Full text link
    We consider a single particle spectrum as given by the eigenvalues of the Wigner-Dyson ensembles of random matrices, and fill consecutive single particle levels with n fermions. Assuming that the fermions are non-interacting, we show that the distribution of the total energy is Gaussian and its variance grows as n^2 log n in the large-n limit. Next to leading order corrections are computed. Some related quantities are discussed, in particular the nearest neighbor spacing autocorrelation function. Canonical and gran canonical approaches are considered and compared in detail. A semiclassical formula describing, as a function of n, a non-universal behavior of the variance of the total energy starting at a critical number of particles is also obtained. It is illustrated with the particular case of single particle energies given by the imaginary part of the zeros of the Riemann zeta function on the critical line.Comment: 28 pages in Latex format, 5 figures, submitted for publication to Physica

    SIDE, a fiber fed spectrograph for the 10.4 m Gran Telescopio Canarias (GTC)

    Get PDF
    SIDE (Super Ifu Deployable Experiment) will be a second-generation, common-user instrument for the Grantecan (GTC) on La Palma (Canary Islands, Spain). It is being proposed as a spectrograph of low and intermediate resolution, highly efficient in multi-object spectroscopy and 3D spectroscopy. SIDE features the unique possibility of performing simultaneous visible and NIR observations for selected ranges. The SIDE project is leaded by the Instituto de Astrofisica de Andalucia (IAA-CSIC) in Granada (Spain) and the SIDE Consortium is formed by a total of 10 institutions from Spain, Mexico and USA. The SIDE Feasibility Study has been completed and currently the project is under revision by the GTC Project Office.Comment: 9 pages, 6 figures, to appear in "Ground-based and Airborne Instrumentation for Astronomy II" SPIE conference Proc. 7014, Marseille, 23-28 June 200

    Using surveys of Affymetrix GeneChips to study antisense expression.

    Get PDF
    We have used large surveys of Affymetrix GeneChip data in the public domain to conduct a study of antisense expression across diverse conditions. We derive correlations between groups of probes which map uniquely to the same exon in the antisense direction. When there are no probes assigned to an exon in the sense direction we find that many of the antisense groups fail to detect a coherent block of transcription. We find that only a minority of these groups contain coherent blocks of antisense expression suggesting transcription. We also derive correlations between groups of probes which map uniquely to the same exon in both sense and antisense direction. In some of these cases the locations of sense probes overlap with the antisense probes, and the sense and antisense probe intensities are correlated with each other. This configuration suggests the existence of a Natural Antisense Transcript (NAT) pair. We find the majority of such NAT pairs detected by GeneChips are formed by a transcript of an established gene and either an EST or an mRNA. In order to determine the exact antisense regulatory mechanism indicated by the correlation of sense probes with antisense probes, a further investigation is necessary for every particular case of interest. However, the analysis of microarray data has proved to be a good method to reconfirm known NATs, discover new ones, as well as to notice possible problems in the annotation of antisense transcripts

    Superconducting Vortex Lattices for Ultracold Atoms

    Full text link
    We propose and analyze a nanoengineered vortex array in a thin-film type-II superconductor as a magnetic lattice for ultracold atoms. This proposal addresses several of the key questions in the development of atomic quantum simulators. By trapping atoms close to the surface, tools of nanofabrication and structuring of lattices on the scale of few tens of nanometers become available with a corresponding benefit in energy scales and temperature requirements. This can be combined with the possibility of magnetic single site addressing and manipulation together with a favorable scaling of superconducting surface-induced decoherence.Comment: Published Version. Manuscript: 5 pages, 3 figures. Supplementary Information: 11 pages, 7 figure

    Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon

    Full text link
    The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3σ3 \sigma significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.Comment: discussion expanded including light mediators and nuclear uncertainties, figures added, references added. V3: Fig. 7 corrected, conclusions unchange
    • …
    corecore