100 research outputs found

    Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorption

    Get PDF
    The traditional silicate bioactive glasses exhibit poor thermal processability, which inhibits fiber drawing or sintering into scaffolds. The composition of the silicate glasses has been modified to enable hot processing. However, the hot forming ability is generally at the expense of bioactivity. Metaphosphate glasses, on the other hand, possess excellent thermal processability, congruent dissolution, and a tailorable degradation rate. However, due to the layer-by-layer dissolution mechanism, cells do not attach to the material surface. Furthermore, the congruent dissolution leads to a low density of OH groups forming on the glass surface, limiting the adsorption of proteins. It is well regarded that the initial step of protein adsorption is critical as the cells interact with this protein layer, rather than the biomaterial itself. In this paper, we explore the possibility of improving protein adsorption on the surface of phosphate glasses through a variety of surface treatments, such as washing the glass surface in acidic (pH 5), neutral, and basic (pH 9) buffer solutions followed or not by a treatment with (3-aminopropyl)triethoxysilane (APTS). The impact of these surface treatments on the surface chemistry (contact angle, ζ-potential) and glass structure (FTIR) was assessed. In this manuscript, we demonstrate that understanding of the material surface chemistry enables to selectively improve the adsorption of albumin and fibronectin (used as model proteins). Furthermore, in this study, well-known silicate bioactive glasses (i.e., S53P4 and 13-93) were used as controls. While surface treatments clearly improved proteins adsorption on the surface of both silicate and phosphate glasses, it is of interest to note that protein adsorption on phosphate glasses was drastically improved to reach similar protein grafting ability to the silicate bioactive glasses. Overall, this study demonstrates that the limited cell/phosphate glass biological response can easily be overcome through deep understanding and control of the glass surface chemistry

    SRC inhibition prevents P-cadherin mediated signaling and function in basal-like breast cancer cells

    Get PDF
    BACKGROUND: Basal-like breast cancer (BLBC) is a poor prognosis subgroup of triple-negative carcinomas that still lack specific target therapies and accurate biomarkers for treatment selection. P-cadherin is frequently overexpressed in these tumors, promoting cell invasion, stem cell activity and tumorigenesis by the activation of Src-Family kinase (SRC) signaling. Therefore, our aim was to evaluate if the treatment of BLBC cells with dasatinib, the FDA approved SRC inhibitor, would impact on P-cadherin induced tumor aggressive behavior. METHODS: P-cadherin and SRC expression was evaluated in a series of invasive Breast Cancer and contingency tables and chi-square tests were performed. Cell-cell adhesion measurements were performed by Atomic Force Microscopy, where frequency histograms and Gaussian curves were applied. 2D and 3D cell migration and invasion, proteases secretion and self-renew potential were evaluated in vitro. Student's t-tests were used to determine statistically significant differences. The cadherin/catenin complex interactions were evaluated by in situ proximity-ligation assay, and statistically significant results were determined by using Mann-Whitney test with a Bonferroni correction. In vivo xenograft mouse models were used to evaluate the impact of dasatinib on tumor growth and survival. ANOVA test was used to evaluate the differences in tumor size, considering a confidence interval of 95%. Survival curves were estimated by the Kaplan-Meier's method, using the log-rank test to assess significant differences for mice overall survival. RESULTS: Our data demonstrated that P-cadherin overexpression is significantly associated with SRC activation in breast cancer cells, which was also validated in a large series of primary tumor samples. SRC activity suppression with dasatinib significantly prevented the in vitro functional effects of P-cadherin overexpressing cells, as well as their in vivo tumorigenic and metastatic ability, by increasing mice overall survival. Mechanistically, SRC inhibition affects P-cadherin downstream signaling, rescues the E-cadherin/p120-catenin complex to the cell membrane, recovering cell-cell adhesion function. CONCLUSIONS: In conclusion our findings show that targeting P-cadherin/SRC signaling and functional activity may open novel therapeutic opportunities for highly aggressive and poor prognostic basal-like breast cancer.This work was funded by Laço Grant 2014, by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior under the projects PTDC/SAU-GMG/120049/ 2010-FCOMP-01-0124-FEDER-021209, PEst-C/SAU/LA0003/2013, NORTE-01- 0145-FEDER-000029 and POCI-01-0145-FEDER-016390. FCT funded the research grants of ASR (SFRH/BPD/75705/2011), ARN (SFRH/BD/100380/2014), BS (SFRH/ BPD/104208/2014), AFV (SFRH/BPD/90303/2012), as well as JP with Programa IFCT 2013 (FCT Investigator). IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274)

    Dinâmica da agricultura anual na região do Matopiba.

    Get PDF
    Considerando a importância de se conhecer a dinâmica do uso e cobertura da terra da região, este estudo mapeou a prática da agricultura anual com emprego de alta tecnologia, nos anos de 2005, 2010 e 2014, e estimou as taxas de expansão desta atividade nos diferentes períodos.SBSR 2015

    Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release

    Get PDF
    Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed
    corecore