520 research outputs found

    Phase diagram of a two-dimensional system with anomalous liquid properties

    Full text link
    Using Monte Carlo simulation techniques, we calculate the phase diagram for a square shoulder-square well potential in two dimensions that has been previously shown to exhibit liquid anomalies consistent with a metastable liquid-liquid critical point. We consider the liquid, gas and five crystal phases, and find that all the melting lines are first order, despite a small range of metastability. One melting line exhibits a temperature maximum, as well as a pressure maximum that implies inverse melting over a small range in pressure.Comment: 11 pages, 13 figure

    The liquid-glass transition of silica

    Full text link
    We studied the liquid-glass transition of SiO2SiO_2 by means of replica theory, utilizing an effective pair potential which was proved to reproduce a few experimental features of silica. We found a finite critical temperature T0T_0, where the system undergoes a phase transition related to replica symmetry breaking, in a region where experiments do not show any transition. The possible sources of this discrepancy are discussed.Comment: 14 pages, 6 postscript figures. Revised version accepted for pubblication on J.Chem.Phy

    Energy landscape of a simple model for strong liquids

    Full text link
    We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamics and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.Comment: Revised versio

    Non-Gaussian energy landscape of a simple model for strong network-forming liquids: accurate evaluation of the configurational entropy

    Full text link
    We present a numerical study of the statistical properties of the potential energy landscape of a simple model for strong network-forming liquids. The model is a system of spherical particles interacting through a square well potential, with an additional constraint that limits the maximum number of bonds, NmaxN_{\rm max}, per particle. Extensive simulations have been carried out as a function of temperature, packing fraction, and NmaxN_{\rm max}. The dynamics of this model are characterized by Arrhenius temperature dependence of the transport coefficients and by nearly exponential relaxation of dynamic correlators, i.e. features defining strong glass-forming liquids. This model has two important features: (i) landscape basins can be associated with bonding patterns; (ii) the configurational volume of the basin can be evaluated in a formally exact way, and numerically with arbitrary precision. These features allow us to evaluate the number of different topologies the bonding pattern can adopt. We find that the number of fully bonded configurations, i.e. configurations in which all particles are bonded to NmaxN_{\rm max} neighbors, is extensive, suggesting that the configurational entropy of the low temperature fluid is finite. We also evaluate the energy dependence of the configurational entropy close to the fully bonded state, and show that it follows a logarithmic functional form, differently from the quadratic dependence characterizing fragile liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile behavior.Comment: Final version. Journal of Chemical Physics 124, 204509 (2006

    Ocular transient receptor potential channel function in health and disease

    Get PDF
    Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca2+ transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca2+ selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression

    Distributions of inherent structure energies during aging

    Full text link
    We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different aging realizations, we calculate distributions of inherent structure energies for different aging times and contrast them with equilibrium. We find that the distributions initially become narrower and then widen as the system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those observed in equilibrium. Simulation results are partially captured by theoretical predictions only when the final temperature is higher than the mode coupling temperature.Comment: 5 pages, 4 figure

    Relation Between the Widom line and the Strong-Fragile Dynamic Crossover in Systems with a Liquid-Liquid Phase Transition

    Full text link
    We investigate, for two water models displaying a liquid-liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid-liquid critical point. We find a correlation between the dynamic fragility transition and the locus of specific heat maxima CPmaxC_P^{\rm max} (``Widom line'') emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid-liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between CPmaxC_P^{\rm max} and dynamic crossover is not limited to the case of water, a hydrogen bond network forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically-symmetric two-scale potential known to possess a liquid-liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions.Comment: 6 pages and 5 figure

    Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells

    Get PDF
    We here provide a brief summary of the characteristics of transient receptor potential channels (TRPs) identified in corneal tissue layers and cells. In general, TRPs are nonselective cation channels which are Ca ²⁺ permeable. Most TRPs serve as thermosensitive molecular sensors (thermo-TRPs). Based on their functional importance, the possibilities are described for drug-targeting TRP activity in a clinical setting. TRPs are expressed in various tissues of the eye including both human corneal epithelial and endothelial layers as well as stromal fibroblasts and stromal nerve fibers. TRP vanilloid type 1 (TRPV1) heat receptor, also known as capsaicin receptor, along with TRP melastatin type 8 (TRPM8) cold receptor, which is also known as menthol receptor, are prototypes of the thermo-TRP family. The TRPV1 functional channel is the most investigated TRP channel in these tissues, owing to its contribution to maintaining tissue homeostasis as well as eliciting wound healing responses to injury. Other thermo-TRP family members identified in these tissues are TRPV2, 3 and 4. Finally, there is the TRP ankyrin type 1 (TRPA1) cold receptor. All of these thermo-TRPs can be activated within specific temperature ranges and transduce such inputs into chemical and electrical signals. Although several recent studies have begun to unravel complex roles for thermo-TRPs such as TRPV1 in corneal layers and resident cells, additional studies are needed to further elucidate their roles in health and disease
    corecore