7 research outputs found

    Antimicrobial Resistance: the use of antimicrobials in the Livestock Sector

    Get PDF
    The use of antimicrobials in livestock production provides a basis for improving animal health and productivity. This in turn contributes to food security, food safety, animal welfare, protection of livelihoods and animal resources. However, there is increasing concern about levels of antimicrobial resistance in bacteria isolated from human, animal, food and environmental samples and how this relates to use of antimicrobials in livestock production. The report examines antimicrobial usage in livestock and its impact on public health and the food economy. Policy issues and knowledge gaps to manage antimicrobial use and the risk of antimicrobial resistance are identified and discussed

    A qualitative risk assessment for visual-only post-mortem meat inspection of cattle, sheep, goats and farmed/wild deer

    No full text
    The UK Food Standards Agency is currently funding research to build the evidence base for the modernisation of meat inspection. This includes an assessment of the risks to public health and animal health/welfare of moving to a visual-only post-mortem meat inspection (PMMI), where routine mandatory palpation and incision procedures are omitted. In this paper we present the results of a risk assessment for a change from current to visual-only PMMI for cattle, sheep/goats and farmed/wild deer. A large list of hazard/species pairings were assessed and prioritised by a process of hazard identification. Twelve hazard/species pairings were selected for full consideration within the final risk assessment. The results of the public health risk assessment indicated that all hazard/species pairings were Negligible with the exception of Cysticercus bovis in cattle, which was judged to be of low-medium increased risk for systems not conforming to criteria as laid down by EC Regulation 1244/2007, compared to systems that do conform to Regulations for visual-only PMMI. Most hazard/species pairings were concluded to pose a potential increased risk to animal health/welfare, including Mycobacterium bovis (very low – low increase in risk, but with considerable uncertainty), Fasciola hepatica (negligible – very low) and Cysticercus bovis (very low – low). Due to low feedback rates to farmers, the real risk to animal health/welfare for F. hepatica and C. bovis, including animals in non-conforming systems under visual-only PMMI, is probably negligible. That then leaves M. bovis as the only confirmed non-negligible animal health and welfare risk

    Implementing a probabilistic definition of freedom from infection to facilitate trade of livestock: Putting theory into praxis for the example of bovine herpes virus-1

    No full text
    International trade of livestock and livestock products poses a significant potential threat for spread of diseases, and importing countries therefore often require that imported animals and products are free from certain pathogens. However, absolute freedom from infection cannot be documented, since all test protocols are imperfect and can lead to false-negative results. It is possible instead to estimate the “probability of freedom from infection” and its opposite, the probability of infection despite having a negative test result. These probabilities can be estimated based on a pre-defined target prevalence, known surveillance efforts in the target population and known test characteristics of any pre-export test. Here, calculations are demonstrated using the example of bovine herpes virus-1 (BoHV-1). In a population that recently became free of BoHV-1 without using vaccination, the probability of being infected of an animal randomly selected for trade is 800 per 1 million and this probability is reduced to 64 (95% probability interval PI 6–161) per 1 million when this animal is tested negatively prior to export with a gB-ELISA. In a population that recently became free of BoHV-1 using vaccination, the probability of being infected of an animal randomly selected for trade is 200 per 1 million, and this probability can be reduced to 63 (95% PI 42–87) when this animal is tested negatively prior to export with a gE-ELISA. Similar estimations can be made on a herd level when assumptions are made about the herd size and the intensity of the surveillance efforts. Subsequently, the overall probability for an importing country of importing at least 1 infected animal can be assessed by taking into account the trade volume. Definition of the acceptable level of risk, including the probability of false-negative results to occur, is part of risk management. Internationally harmonized target prevalence levels for the declaration of freedom from infection from selected pathogens provide a significant contribution to the facilitation of international trade of livestock and livestock products by allowing exporting countries to design tailor-made output-based surveillance programs, while providing equivalent guarantees regarding the probability of freedom from infection of the population. Combining this with an approach to assess the overall probability of introducing at least 1 infected animal into an importing country during a defined time interval will help importing countries to achieve their desired level of acceptable risk and will help to assess the equivalence of animal health and food safety standards between trading partner

    Strengths and weaknesses of meat inspection as a contribution to animal health and welfare surveillance

    No full text
    Meat inspection (MI) is one of the most widely implemented and longest running systems of surveillance. It was primarily introduced to identify meat of animals that is not fit for human consumption. Additionally, MI was progressively recognised as a suitable source of data collection and for monitoring a broad spectrum of diseases and conditions concerning animal health and welfare. For Europe, MI tasks are regulated at the European rather than country level and include a set of activities before and after stunning (ante and post mortem inspection) involving visual inspection, palpation and incisions. Over the last decade, the current MI protocol has been challenged because of its low sensitivity for important public health hazards. We aimed to assess the strengths and weaknesses of current MI protocols with primary focus on its utility in the context of animal health – including both notifiable and production diseases – and welfare, i.e. its capacity to detect cases with an aim to quantify the frequency of animal disease and welfare cases. The consequences of an alternative inspection protocol using visual-only inspection were also explored. As a first step, a review of grey and published literature was conducted for a selected number of diseases and welfare conditions in seven species or species groups: swine, poultry, bovines, small ruminants, solipeds and farmed game, represented by red deer, wild boar, rabbits and ostriches. This review highlighted a substantial lack of suitable and accessible published data on the frequency of occurrence of many diseases and conditions affecting food animals in Europe. Additionally, there were very limited data on the detection performance of MI, particularly in relation to specific degrees of severity of clinical signs. Due to the data gaps, a large proportion of input data used in this work was based on expert opinion and general biologic manifestations of the conditions investigated. The probability of case detection was quantified using a scenario tree modelling approach, taking into account the frequency of case presentation and inspection coverage. In general, the performance of MI was highly correlated with the presence of clinical and/or pathological signs in affected animals. Early or subclinical cases were likely to be “non-detectable” at slaughter. Regarding detectable cases, the impact of moving to visual-only inspection was negligible for most notifiable diseases and conditions considered with a few exceptions, primarily detectable cases of tuberculosis. Current MI activities were found to be effective to detect the majority of animal welfare conditions considered by species, predominantly by ante mortem inspection. The effectiveness of MI was also considered for endemic diseases that are not currently subject to systematic control efforts. These included respiratory diseases and parasite infections. It was shown that MI could provide an efficient means of identifying producers in need of animal health advice, provided that information is collected and fed back to veterinarians and livestock farmers. Within an integrated information system, MI could substantially contribute to the control of a considerable range of animal health and welfare issues. Data already collected need to be made available for on-farm decision making. It was also noted that if the slaughter population is strongly affected by international trade, i.e. where a large proportion of animals originate from one country and are slaughtered in another, the usefulness of MI for endemic disease surveillance will be affected by either reduced coverage or bias or both. In conclusion, our results indicate that while ante mortem inspection remains essential for the detection of animal welfare conditions, a move to visual-only post mortem inspection has - for the diseases and conditions considered - negligible negative impact on disease control. However in countries or regions that are not free of TB, special relevance of palpation and cutting of lymph nodes will have to be considered. MI information has considerable potential to inform disease control efforts, but only few countries use it systematically limiting the actual benefit that is achieved by these data. Finally, MI can also provide “back-up” surveillance in a situation where other means of detection fail and may represent the sole means of case detection for certain infections (e.g. liver fluke or cestodes)

    Perceptions of antimicrobial usage, antimicrobial resistance and policy measures to reduce antimicrobial usage in convenient samples of Belgian, French, German, Swedish and Swiss pig farmers

    No full text
    International audienceWe conducted a survey among convenient samples of pig farmers (N=281) in Belgium, France, Germany, Sweden and Switzerland. We identified some significant differences among the five investigated countries (independent variable) regarding farmers' antimicrobial usage compared to their own country and worries related to pig farming (dependent variables), but most of the differences were rather small. In general, farmers perceived their own antimicrobial usage to be lower than that of their peers in the same country and lower than or similar to that of farmers from other countries. This may be a consequence of our convenience sample, resulting in self-selection of highly motivated farmers. Farmers were significantly more worried about financial/legal issues than about antimicrobial resistance. They believed that a reduction in revenues for slaughter pigs treated with a large amount of antimicrobials would have the most impact on reduced antimicrobial usage in their country. Further, farmers who were more worried about antimicrobial resistance and who estimated their own antimicrobial usage as lower than their fellow countrymen, perceived more impact from policy measures on the reduction of antimicrobials. Our results indicated that the same policy measures can be applied to reduce antimicrobial usage in pig farming in all five countries. Moreover, it seems worthwhile to increase pig farmers' awareness of the threat of antimicrobial resistance and its relation to antimicrobial usage; not only because pig farmers appeared little worried about antimicrobial usage but also because it affected farmers' perception of policy measures to reduce antimicrobial usage. Our samples were not representative for the national pig farmer populations. Further research is therefore needed to examine to what extent our findings can be generalised to these populations and to farmers in other countries
    corecore