1,342 research outputs found
Facile Synthesis Of Reduced Graphene Oxide-supported Pd/Cuo Nanoparticles As An Efficient Catalyst For Cross-coupling Reactions
The present communication reports a scientific investigation of a simple and versatile synthetic route for the synthesis of palladium nanoparticles decorated with copper oxide and supported on reduced graphene oxide (rGO). They are used as a highly active catalyst of Suzuki, Heck, and Sonogashira cross coupling reactions with a remarkable turnover number of 7000 and a turnover frequency of 85000 h-1. The Pd-CuO nanoparticles supported on reduced graphene oxide nanosheets (Pd-CuO/rGO) exhibit an outstanding performance through a high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method is used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires a simultaneous reduction of palladium and copper nitrates in presence of graphene oxide (GO) nanosheets using hydrazine hydrate as a strong reducing agent. The highly active and recyclable catalyst has many advantages including mild reaction conditions and short reaction durations in an environmentally benign solvent system. Moreover, the catalyst prepared can be recycled for up to five times with nearly identical high catalytic activity. Furthermore, the high catalytic activity and the recyclability of the catalyst prepared are due to the strong catalyst-support interaction. The defect sites of the reduced graphene oxide (rGO) act as nucleation centers that enable anchoring of both Pd and CuO nanoparticles and hence, minimize the possibility of agglomeration which leads to a severe decrease of the catalytic activity
Microwave-assisted Synthesis Of Palladium Nanoparticles Supported On Copper Oxide In Aqueous Medium As An Efficient Catalyst For Suzuki Cross-coupling Reaction
We report here a reliable green method for the synthesis of palladium nanoparticles supported on copper oxide as a highly active and efficient catalyst for Suzuki cross-coupling reaction. The experimental synthetic approach is based on microwave-assisted chemical reduction of an aqueous mixture of palladium and copper salt simultaneously using hydrazine hydrate as reducing agent. The catalyst was fully characterized using various techniques showing well-dispersed palladium nanoparticles. The catalytic activity and recyclability of the prepared catalyst were experimentally explored in the ligand-free Suzuki cross-coupling reaction with a diverse series of functionalized substrates. The synthesized Pd/CuO catalyst shows many advantages beside its high catalytic efficiency such as the recyclability of up to five times with negligible loss of catalytic activity, short reaction times, use of environmentally benign solvent systems, and mild reaction conditions
Removal Of Methylene Blue By Adsorption Of Water Hyacinth Derived Active Carbon Embedded With Cobalt Nanoparticles
In this research, active carbon-based catalyst synthesis and characterization were tested for potential catalysts to be used in dye removal of methylene blue (MB). Water hyacinth is one of the major problems that is facing humankind and especially here in Egypt. One of the implications of industrial activities is environmental pollution. Dyes used in the production of textiles, paper, and clothes are one of the major pollutants. The waste of those dyes discharged into water supplies without treatment or with ineffective treatment harmfully impacts the environment. In this research, the treatment is implemented using active carbon-based catalysts using embedded nanoparticles. This leads to a huge increase in the adsorbent\u27s surface area, also increasing the adsorbent efficiency. The activated carbon was derived from water hyacinth that grows near the Nile River. Water hyacinth has many practical uses as it can absorb heavy metals like lead and dyes. Water hyacinth was converted into activated carbon through carbonization. Different dyes were used with different contact times in fixed conditions
Redox Regulation of Heart Regeneration: An Evolutionary Tradeoff
Heart failure is a costly and deadly disease, affecting over 23 million patients worldwide, half of which die within 5 years of diagnosis. The pathophysiological basis of heart failure is the inability of the adult heart to regenerate lost or damaged myocardium. Although limited myocyte turnover does occur in the adult heart, it is insufficient for restoration of contractile function1-6. In contrast to lower vertebrates which can regenerate their myocardium through cardiomyocyte proliferation,7-13, adult mammalian heart cardiomyogenesis very limited1-5. Studies in the late 90s elegantly demonstrated that mammalian cardiomyocytes continue to divide for a few days after birth 14-16, only to undergo permanent cell cycle arrest shortly thereafter. Recently, we demonstrated that resection of up to 15% of the apex of the left ventricle of postnatal day 1 (P1) mice results in complete regeneration within 21 days following injury, without significant fibrosis and cardiac dysfunction17. Moreover, we described a similar regenerative response following ischemic myocardial infarction 18. This response was well characterized by robust cardiomyocyte proliferation, with gradual restoration of normal cardiac morphology and function. In addition to the histological evidence of proliferating myocytes, genetic fate-mapping studies confirmed that the majority of newly formed cardiomyocytes are derived from proliferation of preexisting cardiomyocytes17. Intriguingly, this regenerative capacity is lost by P7, after which injury results in the cardiomyocyte hypertrophy and scar-formation, which coincides with binucleation and cell cycle exit of cardiomyocytes 14, 19. An important approach to understanding the loss of regenerative ability of the mammalian heart is to first consider why, and not only how, this happens. The regenerative ability of the early postnatal heart following resection or ischemic infarction involves regeneration of the lost myocardium and vasculature with restoration of normal myocardial thickness and architecture, and long-term functional recovery. Why would the heart permanently forego such a remarkable regenerative program shortly after birth? The answer may lie in within the fundamental principal of evolutionary tradeoff
Mass Hierarchies and the Seesaw Neutrino Mixing
We give a general analysis of neutrino mixing in the seesaw mechanism with
three flavors. Assuming that the Dirac and u-quark mass matrices are similar,
we establish simple relations between the neutrino parameters and individual
Majorana masses. They are shown to depend rather strongly on the physical
neutrino mixing angles. We calculate explicitly the implied Majorana mass
hierarchies for parameter sets corresponding to different solutions to the
solar neutrino problem.Comment: 11 pages, no figures, replaced with final version. Minor corrections
and one typo corrected. Added one referenc
Robust leakage-based distributed precoder for cooperative multicell systems
Coordinated multipoint (CoMP) from long term evolution (LTE)-advanced is a promising technique to enhance the system spectral efficiency. Among the CoMP techniques, joint transmission has high communication requirements, because of the data sharing phase through the backhaul network, and coordinated scheduling and beamforming reduces the backhaul requirements, since no data sharing is necessary. Most of the available CoMP techniques consider perfect channel knowledge at the transmitters. Nevertheless for practical systems this is unrealistic. Therefore in this study the authors address this limitation by proposing a robust precoder for a multicell-based systems, where each base station (BS) has only access to an imperfect local channel estimate. They consider both the case with and without data sharing. The proposed precoder is designed in a distributed manner at each BS by maximising the signal-to-leakage-and-noise ratio of all jointly processed users. By considering the channel estimation error in the design of the precoder, they are able to reduce considerably the impact of these errors in the system's performance. The results show that the proposed scheme has improved performance especially for the high signal-to-noise ratio regime, where the impact of the channel estimation error may be more pronounced
The Performance of SLNR Beamformers in Multi-User MIMO Systems
YesBeamforming in multi-user MIMO (MU-MIMO) systems is
a vital part of modern wireless communication systems. Researchers
looking for best operational performance normally optimize the problem
and then solve for best weight solutions. The weight optimization
problem contains variables in numerator and dominator: this leads to
so-called variable coupling, making the problem hard to solve. Formulating
the optimization in terms of the signal to leakage and noise ratio
(SLNR) helps in decoupling the problem variables. In this paper we
study the performance of the SLNR with variable numbers of users and
handset antennas. The results show that there is an optimum and the capacity
curve is a concave over these two parameters. The performances
of two further variations of this method are also considered
Challenges of Early Years leadership preparation: a comparison between early and experienced Early Years practitioners in England
Leadership has been under-researched in the Early Years (EY) sector of primary schools in England, especially in leading change for professional development. The aim of this paper is to theorise what the leadership culture for EY practitioners looks like, and how Initial Teacher Training providers and schools are preparing practitioners for leadership. Using case studies of EY practitioners in different stages of their career in primary schools, we offer an insight into their preparedness for leadership in EY, the implication being that leadership training requires an understanding and embedding of the EY culture and context. Interviews with both sample groups allowed for deeper insight into the lived world. Interviews were also conducted with the head teachers to gain an overview of the leadership preparation they provided. The main findings suggest that newer EY practitioners are better prepared for leadership from their university training in comparison to more experienced EY practitioners
Triangular Textures for Quark Mass Matrices
The hierarchical quark masses and small mixing angles are shown to lead to a
simple triangular form for the U- and D-type quark mass matrices. In the basis
where one of the matrices is diagonal, each matrix element of the other is, to
a good approximation, the product of a quark mass and a CKM matrix element. The
physical content of a general mass matrix can be easily deciphered in its
triangular form. This parameterization could serve as a useful starting point
for model building. Examples of mass textures are analyzed using this method.Comment: 10 pages, no figure
- âŠ