8,162 research outputs found

    Enhanced graphene nonlinear response through geometrical plasmon focusing

    Get PDF
    We propose a simple approach to couple light into graphene plasmons and focus these excitations at focal spots of a size determined by the plasmon wavelength, thus producing high optical field enhancement that boosts the nonlinear response of the material. More precisely, we consider a graphene structure in which incident light is coupled to its plasmons at the carbon edges and subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large confinement of graphene plasmons, materializing in small, intense focal spots, in which the extraordinary nonlinear response of this material leads to relatively intense harmonic generation. This result shows the potential of plasmon focusing in suitably edged graphene structures to produce large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version

    Measure of the size of CP violation in extended models

    Get PDF
    In this letter we introduce a possible measure of the size of CP violation in the Standard Model and its extensions, based on quantities invariant under the change of weak quark basis. We also introduce a measure of the ``average size'' of CP violation in a model, which can be used to compare the size of CP violation in models involving extra sequential or vector-like quarks, or left-right symmetry.Comment: LaTeX, 7 pages, no figure

    Interference and complementarity for two-photon hybrid entangled states

    Full text link
    In this work we generate two-photon hybrid entangled states (HES), where the polarization of one photon is entangled with the transverse spatial degree of freedom of the second photon. The photon pair is created by parametric down-conversion in a polarization-entangled state. A birefringent double-slit couples the polarization and spatial degrees of freedom of these photons and finally, suitable spatial and polarization projections generate the HES. We investigate some interesting aspects of the two-photon hybrid interference, and present this study in the context of the complementarity relation that exists between the visibilities of the one- and two-photon interference patterns.Comment: 10 pages, 4 figures. Accepted in Physical Review

    Efecto de la composición del gas de refinería sobre las características del proceso de combustión

    Get PDF
    En este artículo de investigación científica se analiza el efecto del cambio de la composición del gas combustible (Gas de Refinería (GR) por Gas Natural (GN)) sobre las características del proceso combustión en hornos de la industria de refinación del petróleo; se evaluó el poder calorífico, el índice de Wobbe (IW) y exceso de oxígeno, para mezclas combustibles de composición variable. Mediante simulación computacional del proceso de combustión se calculó la temperatura adiabática de lama, eficiencia y la composición de los productos de combustión. Se evaluaron mezclas de gases combustibles con poderes caloríficos entre 800-2500 Btu/pie3 y se compararon con la combustión de gas natural. Se registró variabilidad en la temperatura adiabática y la eficiencia en función de la composición del gas y el exceso de oxígeno, lo que genera inestabilidad en el horno y mayor impacto ambiental

    Quantum process reconstruction based on mutually unbiased basis

    Full text link
    We study a quantum process reconstruction based on the use of mutually unbiased projectors (MUB-projectors) as input states for a D-dimensional quantum system, with D being a power of a prime number. This approach connects the results of quantum-state tomography using mutually unbiased bases (MUB) with the coefficients of a quantum process, expanded in terms of MUB-projectors. We also study the performance of the reconstruction scheme against random errors when measuring probabilities at the MUB-projectors.Comment: 6 pages, 1 figur

    Pinning down top dipole moments with ultra-boosted tops

    Full text link
    We investigate existing and future hadron-collider constraints on the top dipole chromomagnetic and chromoelectric moments, two quantities that are expected to be modified in the presence of new physics. We focus first on recent measurements of the inclusive top pair production cross section at the Tevatron and at the Large Hadron Collider. We then analyse the role of top-antitop events produced at very large invariant masses, in the context of the forthcoming 13-14 TeV runs of the LHC, and at a future 100 TeV proton-proton collider. In this latter case, the selection of semileptonic decays to hard muons allows to tag top quarks boosted to the multi-TeV regime, strongly reducing the QCD backgrounds and leading to a significant improvement in the sensitivity to anomalous top couplings.Comment: LaTeX 8 pages, 7 figures. Enlarged version to appear in PR

    Warps and correlations with intrinsic parameters of galaxies in the visible and radio

    Full text link
    From a comparison of the different parameters of warped galaxies in the radio, and especially in the visible, we find that: a) No large galaxy (large mass or radius) has been found to have high amplitude in the warp, and there is no correlation of size/mass with the degree of asymmetry of the warp. b) The disc density and the ratio of dark to luminous mass show an opposing trend: smaller values give more asymmetric warps in the inner radii (optical warps) but show no correlation with the amplitude of the warp; however, in the external radii neither is there any correlation with the asymmetry. c) A third anticorrelation arises from a comparison of the amplitude and degree of asymmetry in the warped galaxies. Hence, it seems that very massive dark matter haloes have nothing to do with the formation of warps but only with the degree of symmetry in the inner radii, and are unrelated to the warp shape for the outermost radii. Denser discs show up the same dependence.Comment: 13 pages, 2 figures, accepted to be published in A&

    Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake

    Get PDF
    The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model
    corecore