17,193 research outputs found

    PACIAE 2.0: An updated parton and hadron cascade model (program) for the relativistic nuclear collisions

    Full text link
    We have updated the parton and hadron cascade model PACIAE for the relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7 to based on PYTHIA 6.4, and renamed as PACIAE 2.0. The main physics concerning the stages of the parton initiation, parton rescattering, hadronization, and hadron rescattering were discussed. The structures of the programs were briefly explained. In addition, some calculated examples were compared with the experimental data. It turns out that this model (program) works well.Comment: 23 pages, 7 figure

    Charged multiplicity density and number of participant nucleons in relativistic nuclear collisions

    Full text link
    The energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic p+pˉp+\bar p experimental data and the PHOBOS and PHENIX Au+AuAu+Au data at RHIC energy could be fairly reproduced within the framework of JPCIAE model and without retuning the model parameters. The predictions for Pb+PbPb+Pb collisions at the LHC energy were also given. We computed the participant nucleon distributions using different methods. It was found that the number of participant nucleons is not a well defined variable both experimentally and theoretically. Thus it may be inappropriate to use the charged particle pseudorapidity density per participant pair as a function of the number of participant nucleons for distinguishing various theoretical models. A discussion for the effect of different definitions in nuclear radius (diffused or sharp) was given.Comment: 15 pages, 7 figure

    Net charge fluctuation and string fragmentation

    Full text link
    We present simulation results of net charge fluctuation in Au+AuAu+Au collisions at snn\sqrt{s_{nn}}=130 GeV from a dynamic model, JPCIAE. The calculations are done for the quark-gluon phase before hadronization, the pion gas, the resonance pion gas from ρ\rho and ω\omega decays and so on. The simulations of the charge fluctuation show that the discrepancy exists between the dynamic model and the thermal model for a pion gas and a resonance pion gas from ρ\rho and ω\omega decays while the simulated charge fluctuation of the quark-gluon phase is close to the thermal model prediction. JPCIAE results of net charge fluctuation in the hardonic phase are nearly 4-5 times larger than one for the quark-gluon phase, which implies that the charge fluctuation in the quark-gluon phase may not survive the hadronization (string fragmentation) as implemented in JPCIAE.Comment: 9 pages, 3 figure

    Mean Field Effects In The Quark-Gluon Plasma

    Get PDF
    A transport model based on the mean free path approach for an interacting meson system at finite temperatures is discussed. A transition to a quark gluon plasma is included within the framework of the MIT bag model. The results obtained compare very well with Lattice QCD calculations when we include a mean field in the QGP phase due to the Debye color screening. In particular the cross over to the QGP at about 175 MeV temperature is nicely reproduced. We also discuss a possible scenario for hadronization which is especially important for temperatures below the QGP phase transition

    Systematic study of elliptic flow parameter in the relativistic nuclear collisions at RHIC and LHC energies

    Get PDF
    We employed the new issue of a parton and hadron cascade model PACIAE 2.1 to systematically investigate the charged particle elliptic flow parameter v2v_2 in the relativistic nuclear collisions at RHIC and LHC energies. With randomly sampling the transverse momentum xx and yy components of the particles generated in string fragmentation on the circumference of an ellipse instead of circle originally, the calculated charged particle v2(η)v_2(\eta) and v2(pT)v_2(p_T) fairly reproduce the corresponding experimental data in the Au+Au/Pb+Pb collisions at sNN\sqrt{s_{NN}}=0.2/2.76 TeV. In addition, the charged particle v2(η)v_2(\eta) and v2(pT)v_2(p_T) in the p+p collisions at s\sqrt s=7 TeV as well as in the p+Au/p+Pb collisions at sNN\sqrt{s_{NN}}=0.2/5.02 TeV are predicted.Comment: 7 pages, 5 figure

    The evolution of ontology in AEC: A two-decade synthesis, application domains, and future directions

    Get PDF
    Ontologies play a pivotal role in knowledge representation, particularly beneficial for the Architecture, Engineering, and Construction (AEC) sector due to its inherent data diversity and intricacy. Despite the growing interest in ontology and data integration research, especially with the advent of knowledge graphs and digital twins, a noticeable lack of consolidated academic synthesis still needs to be addressed. This review paper aims to bridge that gap, meticulously analysing 142 journal articles from 2000 to 2021 on the application of ontologies in the AEC sector. The research is segmented through systematic evaluation into ten application domains within the construction realm- process, cost, operation/maintenance, health/safety, sustainability, monitoring/control, intelligent cities, heritage building information modelling (HBIM), compliance, and miscellaneous. This categorisation aids in pinpointing ontologies suitable for various research objectives. Furthermore, the paper highlights prevalent limitations within current ontology studies in the AEC sector. It offers strategic recommendations, presenting a well-defined path for future research to address these gaps

    Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    Get PDF
    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p+pˉp+\bar p experimental data and the PHOBOS and PHENIX Au+AuAu+Au data at snn\sqrt s_{nn}=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy Au+AuAu+Au collisions and for Pb+PbPb+Pb collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, ,isnotawelldefinedvariablebothexperimentallyandtheoretically.Therefore,itisinappropriatetousechargedparticlepseudorapiditydensityperparticipantpairasafunctionof, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.
    corecore