28 research outputs found

    An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function

    Get PDF
    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress–strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics

    Non-invasive or minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in adults: a systematic review

    Get PDF
    Objectives: Autopsies are used for healthcare quality control and improving medical knowledge. Because autopsy rates are declining worldwide, various non-invasive or minimally invasive autopsy methods are now being developed. To investigate whether these might replace the invasive autopsies conventionally performed in naturally deceased adults, we systematically reviewed original prospective validation studies. Materials and methods: We searched six databases. Two reviewers independently selected articles and extracted data. Methods and patient groups were too heterogeneous for meaningful meta-analysis of outcomes. Results: Sixteen of 1538 articles met our inclusion criteria. Eight studies used a blinded comparison; ten included less than 30 appropriate cases. Thirteen studies used radiological imaging (seven dealt solely with non-invasive procedures), two thoracoscopy and laparoscopy, and one sampling without imaging. Combining CT and MR was the best non-invasive method (agreement for cause of death: 70 %, 95%CI: 62.6; 76.4), but minimally invasive methods surpassed non-invasive methods. The highest sensitivity for cause of death (90.9 %, 95%CI: 74.5; 97.6, suspected duplicates excluded) was achieved in recent studies combining CT, CT-angiography and biopsies. Conclusion: Minimally invasive autopsies including biopsies performed best. To establish a feasible alternative to conventional autopsy and to increase consent to post-mortem investigations, further research in larger study groups is needed. Key points: • Health care quality control benefits from clinical feedback provided by (alternative) autopsies. • So far, sixteen studies investigated alternative autopsy methods for naturally deceased adults. • Thirteen studies used radiological imaging modalities, eight tissue biopsies, and three CT-angiography. • Combined CT, CT-angiography and biopsies were most sensitive diagnosing cause of death

    Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in-vivo patellofemoral joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurately measuring <it>in-vivo</it> motion of the knee's patellofemoral (PF) joint is challenging. Conventional measurement techniques have largely been unable to accurately measure three-dimensional, <it>in-vivo</it> motion of the patella during dynamic activities. The purpose of this study was to assess the accuracy of a new model-based technique for measuring PF joint motion.</p> <p>Methods</p> <p>To assess the accuracy of this technique, we implanted tantalum beads into the femur and patella of three cadaveric knee specimens and then recorded dynamic biplane radiographic images while manually flexing and extending the specimen. The position of the femur and patella were measured from the biplane images using both the model-based tracking system and a validated dynamic radiostereometric analysis (RSA) technique. Model-based tracking was compared to dynamic RSA by computing measures of bias, precision, and overall dynamic accuracy of four clinically-relevant kinematic parameters (patellar shift, flexion, tilt, and rotation).</p> <p>Results</p> <p>The model-based tracking technique results were in excellent agreement with the RSA technique. Overall dynamic accuracy indicated errors of less than 0.395 mm for patellar shift, 0.875° for flexion, 0.863° for tilt, and 0.877° for rotation.</p> <p>Conclusion</p> <p>This model-based tracking technique is a non-invasive method for accurately measuring dynamic PF joint motion under <it>in-vivo</it> conditions. The technique is sufficiently accurate in measuring clinically relevant changes in PF joint motion following conservative or surgical treatment.</p

    Status and Trends of Physical Activity Surveillance, Policy, and Research in 164 Countries: Findings From the Global Observatory for Physical Activity—GoPA! 2015 and 2020 Surveys

    Get PDF
    Background: Physical activity (PA) surveillance, policy, and research efforts need to be periodically appraised to gain insight into national and global capacities for PA promotion. The aim of this paper was to assess the status and trends in PA surveillance, policy, and research in 164 countries. Methods: We used data from the Global Observatory for Physical Activity (GoPA!) 2015 and 2020 surveys. Comprehensive searches were performed for each country to determine the level of development of their PA surveillance, policy, and research, and the findings were verified by the GoPA! Country Contacts. Trends were analyzed based on the data available for both survey years. Results: The global 5-year progress in all 3 indicators was modest, with most countries either improving or staying at the same level. PA surveillance, policy, and research improved or remained at a high level in 48.1%, 40.6%, and 42.1% of the countries, respectively. PA surveillance, policy, and research scores decreased or remained at a low level in 8.3%, 15.8%, and 28.6% of the countries, respectively. The highest capacity for PA promotion was found in Europe, the lowest in Africa and low- and lower-middle-income countries. Although a large percentage of the world’s population benefit from at least some PA policy, surveillance, and research efforts in their countries, 49.6 million people are without PA surveillance, 629.4 million people are without PA policy, and 108.7 million live in countries without any PA research output. A total of 6.3 billion people or 88.2% of the world’s population live in countries where PA promotion capacity should be significantly improved. Conclusion: Despite PA is essential for health, there are large inequalities between countries and world regions in their capacity to promote PA. Coordinated efforts are needed to reduce the inequalities and improve the global capacity for PA promotion
    corecore