45 research outputs found

    Lower crustal crystallization and melt evolution at mid-ocean ridges

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 651–655, doi:10.1038/ngeo1552.Mid-ocean ridge magma is produced when Earth’s mantle rises beneath the ridge axis and melts as a result of the decrease in pressure. This magma subsequently undergoes cooling and crystallization to form the oceanic crust. However, there is no consensus on where within the crust or upper mantle crystallization occurs1-5. Here we provide direct geochemical evidence for the depths of crystallization beneath ridge axes of two spreading centres located in the Pacific Ocean: the fast-spreading-rate East Pacific Rise and intermediate-spreading-rate Juan de Fuca Ridge. Specifically, we measure volatile concentrations in olivine-hosted melt inclusions to derive vapour-saturation pressures and to calculate crystallisation depth. We also analyse the melt inclusions for major and trace element concentrations, allowing us to compare the distributions of crystallisation and to track the evolution of the melt during ascent through the oceanic crust. We find that most crystallisation occurs within a seismically-imaged melt lens located in the shallow crust at both ridges, but over 25% of the melt inclusions have crystallisation pressures consistent with formation in the lower oceanic crust. Furthermore, our results suggest that melts formed beneath the ridge axis can be efficiently mixed and undergo olivine crystallisation in the mantle, prior to ascent into the ocean crust.This research was supported by the National Science Foundation (EAR-0646694) and the WHOI Deep Ocean Exploration Institute/Ocean Ridge Initiative.2013-02-1

    Self-rated health among Mayan women participating in a randomised intervention trial reducing indoor air pollution in Guatemala

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor air pollution (IAP) from solid fuels is a serious health problem in low-income countries that can be alleviated using improved stoves. Although women are the principal users, few studies have investigated the self-assessed impact of the stoves on their health and lives.</p> <p>Methods</p> <p>This study was conducted in rural highland Guatemala, involving 89 intervention and 80 control Mayan Indian young women (mean 27.8 years, SD 7.2). Outcomes were assessed after approximately 18 months use of the new stove. Our objectives were to compare self-rated health and change in health among women participating in a randomised control trial comparing a chimney stove with an open fire, to describe impacts on women's daily lives and their perceptions of how reduced kitchen smoke affects their own and their children's health.</p> <p>Results</p> <p>On intention-to-treat analysis, 52.8% of intervention women reported improvement in health, compared to 23.8% of control women (p < 0.001). Among 84 intervention women who reported reduced kitchen smoke as an important change, 88% linked this to improvement in their own health, particularly for non-respiratory symptoms (for example eye discomfort, headache); 57% linked reduced smoke to improvement in their children's health, particularly sore eyes.</p> <p>Conclusion</p> <p>Women's perception of their health was improved, but although smoke reduction was valued, this was linked mainly with alleviation of non-respiratory symptoms like eye discomfort and headache. More focus on such symptoms may help in promoting demand for improved stoves and cleaner fuels, but education about more severe consequences of IAP exposure is also required.</p

    The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies

    Get PDF
    A meeting to discuss the latest developments in the biology of sexual development of Plasmodium and transmission-control was held April 5-6, 2011, in Bethesda, MD. The meeting was sponsored by the Bill & Melinda Gates Foundation and the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID) in response to the challenge issued at the Malaria Forum in October 2007 that the malaria community should re-engage with the objective of global eradication. The consequent rebalancing of research priorities has brought to the forefront of the research agenda the essential need to reduce parasite transmission. A key component of any transmission reduction strategy must be methods to attack the parasite as it passes from man to the mosquito (and vice versa). Such methods must be rationally based on a secure understanding of transmission from the molecular-, cellular-, population- to the evolutionary-levels. The meeting represented a first attempt to draw together scientists with expertise in these multiple layers of understanding to discuss the scientific foundations and resources that will be required to provide secure progress toward the design and successful implementation of effective interventions

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-

    Reciprocal Prospective Relationships Between Loneliness and Weight Status in Late Childhood and Early Adolescence

    Get PDF
    Adolescents who do not conform to weight ideals are vulnerable to disapproval and victimization from peers in school. But, missing from the literature is a prospective examination of weight status and feelings of loneliness that might come from those experiences. Using data from the Québec Longitudinal Study of Child Development, we filled that gap by examining the prospective associations between loneliness and weight status when the sample was aged 10 to 13 years. At ages 10, 12, and 13 years, 1042 youth (572 females; 92% from French speaking homes) reported on their loneliness and were weighed and measured. Family income sufficiency was included in our analyses given its relationship with weight status, but also its possible link with loneliness during early adolescence. The findings showed that (1) weight status and loneliness were not associated concurrently; (2) weight status predicted increases in loneliness from ages 12 to 13 years; and (3) loneliness predicted increases in weight from ages 12 to 13 years among female adolescents, but weight loss among male adolescents. The fact that loneliness was involved in weight gain for females suggests that interventions focused on reducing loneliness and increasing connection with peers during early adolescence could help in reducing obesity

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF

    Human sperm cooperate to transit highly viscous regions on the competitive pathway to fertilization

    No full text
    Abstract Human sperm compete for fertilization. Here, we find that human sperm, unexpectedly, cooperate under conditions mimicking the viscosity contrasts in the female reproductive tract. Sperm attach at the head region to migrate as a cooperative group upon transit into and through a high viscosity medium (15-100 cP) from low viscosity seminal fluid. Sperm groups benefit from higher swimming velocity, exceeding that of individual sperm by over 50%. We find that sperm associated with a group possess high DNA integrity (7% fragmentation index) – a stark contrast to individual sperm exhibiting low DNA integrity (> 50% fragmentation index) – and feature membrane decapacitation factors that mediate sperm attachment to form the group. Cooperative behaviour becomes less prevalent upon capacitation and groups tend to disband as the surrounding viscosity reduces. When sperm from different male sources are present, related sperm preferentially form groups and achieve greater swimming velocity, while unrelated sperm are slowed by their involvement in a group. These findings reveal cooperation as a selective mode of human sperm motion – sperm with high DNA integrity cooperate to transit the highly viscous regions in the female tract and outcompete rival sperm for fertilization – and provide insight into cooperation-based sperm selection strategies for assisted reproduction

    FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection

    No full text
    The selection of high quality sperm is critical for intracytoplasmic sperm injection (ICSI), a prevalent assisted reproduction technology. However, standard selection methods are time-consuming and fail to recover the most viable sperm, thereby limiting the ICSI success rate. Microfluidics enables rapid selection of viable sperm in a manner representing in vivo processes, however, existing platforms lack clinical applicability. Here, we present FertDish, which integrates the clinically established ICSI petri dish with a film featuring an array of sperm-selecting microchannels for selection of sperm directly from semen. The FertDish format mimics the clinician-familiar ICSI dish setup, and provides rapid ( 3.3 × 105 sperm/mL), and is readily adaptable to the clinical workflow with potential to improve ICSI outcomes.This work was supported by the Natural Sciences and Engineering Council of Canada (NSERC) through the Collaborative Health Research Projects (CHRP) program, the Canadian Institutes of Health Research (CIHR), the NSERC Discovery Grants and Discovery Accelerator programs, an NSERC E.W.R. Steacie Memorial Fellowship, and the Canada Research Chairs program. The authors also acknowledge support from the Australian Research Council Discovery Program (R.N. and D.S.), and the Monash Interdisciplinary Research Grant (R.N.)
    corecore