1,198 research outputs found

    Correction: Chemical proteomics approaches for identifying the cellular targets of natural products

    Get PDF
    Covering: 2010 up to 2016. Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed

    Chemical probes unravel an antimicrobial defense response triggered by binding of the human opioid dynorphin to a bacterial sensor kinase

    Get PDF
    Host-microbe communication via small molecule signals is important for both symbiotic and pathogenic relationships, but is often poorly understood at the molecular level. Under conditions of host stress, levels of the human opioid peptide dynorphin are elevated, triggering virulence in the opportunistic pathogenic bacterium Pseudomonas aeruginosa via an unknown pathway. Here we apply a multilayered chemical biology strategy to unravel the mode of action of this putative interkingdom signal. We designed and applied dynorphin-inspired photoaffinity probes to reveal the protein targets of the peptide in live bacteria via chemical proteomics. ParS, a largely uncharacterized membrane sensor of a two-component system, was identified as the most promising hit. Subsequent full proteome studies revealed that dynorphin(1-13) induces an antimicrobial peptide-like response in Pseudomonas, with specific upregulation of membrane defence mechanisms. No such response was observed in a parS mutant, which was more susceptible to dynorphin-induced toxicity. Thus, P. aeruginosa exploits the ParS sensing machinery to defend itself against the host in response to dynorphin as a signal. This study highlights interkingdom communication as a potential essential strategy not only for induction of P. aeruginosa virulence but also for maintaining viability in the hostile environment of the host

    Cavernous lymphangioma of the breast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cavernous lymphangioma is a rare lesion in the breast of adults. Only a few cases have been documented in literature.</p> <p>Case presentation</p> <p>We describe a 38-year-old woman who presented with a palpable breast lump, which measured 5 × 4 cm. A local excision of the lump was performed and a diagnosis of cavernous lymphangioma was made. The patient is alive and well, after five years of follow-up, with no complaints or recurrence.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first case to be documented in a black African woman. Complete surgical excision seems to be the best modality of treatment of this lesion.</p

    Novel APC mutations in Czech and Slovak FAP families: clinical and genetic aspects

    Get PDF
    BACKGROUND: Germline mutations in the adenomatous polyposis gene (APC) result in familial adenomatous polyposis (FAP). FAP is an autosomal dominantly inherited disorder predisposing to colorectal cancer. Typical FAP is characterized by hundreds to thousands of colorectal adenomatous polyps and by several extracolonic manifestations. An attenuated form of polyposis (AFAP) is characterized by less than 100 adenomas and later onset of the disease. METHODS: Here, we analyzed the APC gene for germline mutations in 59 Czech and 15 Slovak FAP patients. In addition, 50 apparently APC mutation negative Czech probands and 3 probands of Slovak origin were screened for large deletions encompassing the APC gene. Mutation screening was performed using denaturing gradient gel electrophoresis and/or protein truncation test. DNA fragments showing an aberrant electrophoretic banding pattern were sequenced. Screening for large deletions was performed by multiplex ligation dependent probe amplification. The extent of deletions was analyzed using following microsatellite markers: D5S299, D5S82, D5S134 and D5S346. RESULTS: In the set of Czech and Slovak patients, we identified 46 germline mutations among 74 unrelated probands. Total mutation capture is 62,2% including large deletions. Thirty seven mutations were detected in 49 patients presenting a classical FAP phenotype (75,5%) and 9 mutations in 25 patients with attenuated FAP (36%). We report 20 novel germline APC mutations and 3 large deletions (6%) encompassing the whole-gene deletions and/or exon 14 deletion. In the patients with novel mutations, correlations of the mutation localization are discussed in context of the classical and/or attenuated phenotype of the disease. CONCLUSION: The results of the molecular genetic testing are used both in the establishment of the predictive diagnosis and in the clinical management of patients. In some cases this study has also shown the difficulty to classify clinically between the classical and the attenuated form of FAP according to the established criteria. Interfamilial and/or intrafamilial phenotype variability was also confirmed in some cases which did not fit well with predicted genotype-phenotype correlation. All these findings have to be taken into consideration both in the genetic counselling and in the patient care

    Variability of RNA quality extracted from biofilms of foodborne pathogens using different kits impacts mRNA quantification by qPCR

    Get PDF
    The biofilm formation by foodborne pathogens is known to increase the problem related with surface disinfection procedure in the food processing environment and consequent transmission of these pathogens into the population. Messenger RNA has been increasingly used to understand the action and the consequences of disinfectants in the virulence on such biofilms. RNA quality is an important requirement for any RNA-based analysis since the quality can impair the mRNA quantification. Therefore, we evaluated five different RNA extraction kits using biofilms of the foodborne pathogens Listeria monocytogenes, Escherichia coli, and Salmonella enterica. The five kits yielded RNA with different quantities and qualities. While for E. coli the variability of RNA quality did not affect the quantification of mRNA, the same was not true for L. monocytogenes or S. enterica. Therefore, our results indicate that not all kits are suitable for RNA extraction from bacterial biofilms, and thus, the selection of RNA extraction kit is crucial to obtain accurate and meaningful mRNA quantification.AF and JCB acknowledge the financial support of individual grants SFRH/BD/62359/2009 and SFRH/BD/66250/2009, respectively. The authors acknowledge the gift of bacterial strains to Joana Azeredo and Maria Olivia Pereira.

    Quantitative Assessment of the Sensitivity of Various Commercial Reverse Transcriptases Based on Armored HIV RNA

    Get PDF
    The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues.We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∼1,000 copies, seven of which were sensitive to ∼100 copies, while only 5 were sensitive to ∼10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays.We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation

    A mitotic recombination map proximal to the APC locus on chromosome 5q and assessment of influences on colorectal cancer risk

    Get PDF
    Mitotic recombination is important for inactivating tumour suppressor genes by copy-neutral loss of heterozygosity (LOH). Although meiotic recombination maps are plentiful, little is known about mitotic recombination. The APC gene (chr5q21) is mutated in most colorectal tumours and its usual mode of LOH is mitotic recombination.

    Optimizing a qPCR Gene Expression Quantification Assay for S. epidermidis Biofilms: A Comparison between Commercial Kits and a Customized Protocol

    Get PDF
    Staphylococcus epidermidis biofilm-related infections are a current concern within the medical community due to their high incidence and prevalence, particularly in patients with indwelling medical devices. Biofilm gene expression analysis by quantitative real-time PCR (qPCR) has been increasingly used to understand the role of biofilm formation in the pathogenesis of S. epidermidis infections. However, depending on the RNA extraction procedure, and cDNA synthesis and qPCR master mixes used, gene expression quantification can be suboptimal. We recently showed that some RNA extraction kits are not suitable for S. epidermidis biofilms, due to sample composition, in particular the presence of the extracellular matrix. In this work, we describe a custom RNA extraction assay followed by the evaluation of gene expression using different commercial reverse transcriptase kits and qPCR master mixes. Our custom RNA extraction assay was able to produce good quality RNA with reproducible gene expression quantification, reducing the time and the costs associated. We also tested the effect of reducing cDNA and qPCR reaction volumes and, in most of the cases tested, no significant differences were found. Finally, we titered the SYBR Green I concentrations in standard PCR master mixes and compared the normalized expression of the genes icaA, bhp, aap, psmβ1 and agrB using 4 distinct biofilm forming S. epidermidis strains to the results obtained with commercially available kits. The overall results demonstrated that despite some statistically, but not biologically significant differences observed, the customized qPCR protocol resulted in the same gene expression trend presented by the commercially available kits used
    corecore