10 research outputs found

    Plant lectins: the ties that bind in root symbiosis and plant defense

    Get PDF
    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general

    Investigation of physicochemical and microbiological characteristics of prepared films containing nanoparticles of titanium oxide based on soy flour polysaccharide

    No full text
    Introduction: The natural derived biopolymers are highly interested in recent years. These polymers are considering as the alternative for un-biodegradable plastic films. This is due to the low cost and their availability from biodegradable and renewable sources. In this study, the effect of different concentrations of Tio2 nanoparticles on physicochemical and microbiological characteristics of prepared edible films based on soy flour soluble polysaccharide was investigated. MethodS: The nanocomposite films were prepared by adding the Tio2 nanoparticles (5, 10 and 15%/ db) to the soy flour. In order to investigate the physicochemical and microbiological properties, the resulted nanocomposite films were synthetized based on the casting method. Results: When the content of nanoparticles increased, the moisture content and solubility of the film specimens were significantly decreased, whereas the mechanical resistance was significantly increased. Tio2 nanoparticle was highly effective against basillus cereus, staphylococus ureus and staphylococuss epidermidis. Meanwhile, MIC and MBC of molds were not affected by these films. MIC for penicilium expansum was significantly affected when the Tio2 nanoparticles increased. Conclusion: the results indicated that Tio2 nanoparticles are applicable into the polysaccharide soy films. The nanocomposite film developed in the current study could be used in food applications and as a biodegradable film

    Requirements Engineering for Large-Scale Big Data Applications

    No full text
    As the use of smartphone proliferates, and human interaction through social media is intensified around the globe, the amount of data available to process is greater than ever before. As consequence, the design and implementation of systems capable of handling such vast amounts of data in acceptable timescales has moved to the forefront of academic and industry-based research. This research represents a unique contribution to the field of software engineering for Big Data in the form of an investigation of the big data architectures of three well-known real-world companies: Facebook, Twitter and Netflix. The purpose of this investigation is to gather significant non-functional requirements for real-world big data systems, with an aim to addressing these requirements in the design of our own unique reference architecture for big data processing in the cloud: MC-BDP (Multi-Cloud Big Data Processing). MC-BDP represents an evolution of the PaaS-BDP (Platform as a Service for Big Data Processing) architectural pattern, previously developed by the authors. However, its presentation is not within the scope of this study. The scope of this comparative study is limited to the examination of academic papers, technical blogs, presentations, source code and documentation officially published by the companies under investigation. Ten non-functional requirements are identified and discussed in the context of these companies’ architectures: batch data, stream data, late and out-of-order data, processing guarantees, integration and extensibility, distribution and scalability, cloud support and elasticity, fault tolerance, flow control and flexibility and technology agnosticism. They are followed by the conclusion and considerations for future work

    Big Data Processing, Analysis and Applications in Mobile Cellular Networks

    No full text
    When coupled with spatio-temporal context, location-based data collected in mobile cellular networks provide insights into patterns of human activity, interactions, and mobility. Whilst uncovered patterns have immense potential for improving services of telecom providers as well as for external applications related to social wellbeing, its inherent massive volume make such ‘Big Data’ sets complex to process. A significant number of studies involving such mobile phone data have been presented, but there still remain numerous open challenges to reach technology readiness. They include efficient access in privacy-preserving manner, high performance computing environments, scalable data analytics, innovative data fusion with other sources–all finally linked into the applications ready for operational mode. In this chapter, we provide a broad overview of the entire workflow from raw data access to the final applications and point out the critical challenges in each step that need to be addressed to unlock the value of data generated by mobile cellular networks
    corecore