113 research outputs found

    Quantum Plasmonics

    Get PDF
    Quantum plasmonics is an exciting subbranch of nanoplasmonics where the laws of quantum theory are used to describe light–matter interactions on the nanoscale. Plasmonic materials allow extreme subdiffraction confinement of (quantum or classical) light to regions so small that the quantization of both light and matter may be necessary for an accurate description. State-of-the-art experiments now allow us to probe these regimes and push existing theories to the limits which opens up the possibilities of exploring the nature of many-body collective oscillations as well as developing new plasmonic devices, which use the particle quality of light and the wave quality of matter, and have a wealth of potential applications in sensing, lasing, and quantum computing. This merging of fundamental condensed matter theory with application-rich electromagnetism (and a splash of quantum optics thrown in) gives rise to a fascinating area of modern physics that is still very much in its infancy. In this review, we discuss and compare the key models and experiments used to explore how the quantum nature of electrons impacts plasmonics in the context of quantum size corrections of localized plasmons and quantum tunneling between nanoparticle dimers. We also look at some of the remarkable experiments that are revealing the quantum nature of surface plasmon polaritons

    Birth data accessibility via primary care health records to classify health status in a multi-ethnic population of children: an observational study

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/license/by/4.0

    The Chemotactic Defect in Wiskott-Aldrich Syndrome Macrophages Is Due to the Reduced Persistence of Directional Protrusions

    Get PDF
    Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1

    FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media.</p> <p>Methods</p> <p>Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration.</p> <p>Results</p> <p>Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 <it>μ</it>m diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations.</p> <p>Conclusion</p> <p>Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet and can lead to considerable cell death (necrosis), especially in the core region of larger islets. Such models are of considerable interest to improve the function and viability of cultured, transplanted, or encapsulated islets. The present implementation allows convenient extension to true multiphysics applications that solve coupled physics phenomena such as diffusion and consumption with convection due to flowing or moving media.</p

    The serum zinc concentration as a potential biological marker in patients with major depressive disorder

    Get PDF
    Despite many clinical trials assessing the role of zinc in major depressive disorder (MDD), the conclusions still remain ambiguous. The aim of the present clinical study was to determine and comparison the zinc concentration in the blood of MDD patients (active stage or remission) and healthy volunteers (controls), as well as to discuss its potential clinical usefulness as a biomarker of the disease. In this study 69 patients with current depressive episode, 45 patients in remission and 50 controls were enrolled. The zinc concentration was measured by electrothermal atomic absorption spectrometry (ET AAS). The obtained results revealed, that the zinc concentration in depressed phase were statistically lower than in the healthy volunteers [0.89 vs. 1.06 mg/L, respectively], while the zinc level in patients achieve remission was not significantly different from the controls [1.07 vs. 1.06 mg/L, respectively]. Additionally, among the patients achieve remission a significant differences in zinc concentration between group with and without presence of drug-resistance in the previous episode of depression were observed. Also, patients in remission demonstrated correlation between zinc level and the average number of depressive episodes in the last year. Serum zinc concentration was not dependent on atypical features of depression, presence of psychotic symptoms or melancholic syndrome, age, age of onset or duration of disease, number of episodes in the life time, duration of the episode/remission and severity of depression measured by the Hamilton Rating Scale for Depression (HDRS), and the Montgomery-Asberg Depression Rating Scale (MADRS). Concluding, our findings confirm the correlation between zinc deficit present in the depressive episode, and are consistent with the majority of previous studies. These results may also indicate that serum zinc concentration might be considered as a potential biological marker of MDD

    Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells

    Get PDF
    Background: Human immunodeficiency virus type 1 (HIV-1) induces neuronal dysfunction through host cellular factors and viral proteins including viral protein R (Vpr) released from infected macrophages/microglia. Vpr is important for infection of terminally differentiated cells such as macrophages. The objective of this study was to assess the effect of Vpr in the context of infectious virus particles on neuronal death through proinflammatory cytokines released from macrophages.Methods: Monocyte-derived macrophages (MDM) were infected with either HIV-1 wild type (HIV-1wt), Vpr deleted mutant (HIV-1{increment}Vpr) or mock. Cell lysates and culture supernatants from MDMs were analyzed for the expression and release of proinflammatory cytokines by quantitative reverse transcription-PCR and enzyme-linked immunosorbent assay respectively. Mitogen-activated protein kinases (MAPK) were analyzed in activated MDMs by western blots. Further, the effect of Vpr on neuronal apoptosis was examined using primary neurons exposed to culture supernatants from HIV-1wt, HIV-1{increment}Vpr or mock-infected MDMs by Annexin-V staining, MTT and Caspase - Glo® 3/7 assays. The role of interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α on neuronal apoptosis was also evaluated in the presence or absence of neutralizing antibodies against these cytokines.Results: HIV-1{increment}Vpr-infected MDMs exhibited reduced infection over time and specifically a significant downregulation of IL-1β, IL-8 and TNF-α at the transcriptional and/or protein levels compared to HIV-1wt-infected cultures. This downregulation was due to impaired activation of p38 and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) in HIV-1{increment}Vpr-infected MDMs. The association of SAPK/JNK and p38 to IL-1β and IL-8 production was confirmed by blocking MAPKs that prevented the elevation of IL-1β and IL-8 in HIV-1wt more than in HIV-1{increment}Vpr-infected cultures. Supernatants from HIV-1{increment}Vpr-infected MDMs containing lower concentrations of IL-1β, IL-8 and TNF-α as well as viral proteins showed a reduced neurotoxicity compared to HIV-1wt-infected MDM supernatants. Reduction of neuronal death in the presence of anti-IL-1β and anti-IL-8 antibodies only in HIV-1wt-infected culture implies that the effect of Vpr on neuronal death is in part mediated through released proinflammatory factors.Conclusion: Collectively, these results demonstrate the ability of HIV-1{increment}Vpr to restrict neuronal apoptosis through dysregulation of multiple proinflammatory cytokines in the infected target cells either directly or indirectly by suppressing viral replication. © 2012 Guha et al.; licensee BioMed Central Ltd
    • …
    corecore