27 research outputs found

    Epithelial p38Ξ± Controls Immune Cell Recruitment in the Colonic Mucosa

    Get PDF
    Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-ΞΊB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38Ξ± in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38Ξ± deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38Ξ± in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells

    Enteric Infection with Citrobacter rodentium Induces Coagulative Liver Necrosis and Hepatic Inflammation Prior to Peak Infection and Colonic Disease

    Get PDF
    Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.United States. Army Research Office (Institute for Soldier Nanotechnology grant 6915539 (SRT))National Institutes of Health (U.S.) (Grant P01 CA026731)National Institutes of Health (U.S.) (Grant P30 ES02109)National Institutes of Health (U.S.) (Toxicology Training grant ES-070220

    Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    Get PDF
    Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2βˆ’/βˆ’) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2βˆ’/βˆ’ mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2βˆ’/βˆ’ vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2βˆ’/βˆ’ mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2βˆ’/βˆ’ vs. WT mice, with overt pathogen and commensal translocation into the Muc2βˆ’/βˆ’ colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2βˆ’/βˆ’ mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium

    Fulminant cryptosporidiosis after near-drowning: a human Cryptosporidium parvum strain implicated in invasive gastrointestinal adenocarcinoma and cholangiocarcinoma in an experimental model

    No full text
    In the present work, we report the characterization of a Cryptosporidium parvum strain isolated from a patient who nearly drowned in the Deule River (Lille, France) after being discharged from the hospital where he had undergone allogeneic stem cell transplantation. After being rescued and readmitted to the hospital, he developed fulminant cryptosporidiosis. The strain isolated from the patient's stools was identified as C. parvum II2A15G2R1 (subtype linked to zoonotic exposure) and inoculated into SCID mice. In this host, this virulent C. parvum isolate induced not only severe infection but also invasive gastrointestinal and biliary adenocarcinoma. The observation of adenocarcinomas that progressed through all layers of the digestive tract to the subserosa and spread via blood vessels confirmed the invasive nature of the neoplastic process. These results indicate for the first time that a human-derived C. parvum isolate is able to induce digestive cancer. This study is of special interest considering the exposure of a large number of humans and animals to this waterborne protozoan, which is highly tumorigenic when inoculated in a rodent model
    corecore