232 research outputs found
Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom
A novel lectin was isolated from Bothrops leucurus snake venom using a combination of affinity and gel filtration chromatographies. the lectin (BIL) agglutinated glutaraldehyde-treated rabbit and human erythrocytes with preference for rabbit erythrocytes. Galactose, raffinose, lactose, fetal bovine serum and casein inhibited lectin-induced rabbit erythrocyte agglutination. BIL, with a molecular mass of 30 kDa and composed of two subunits of 15 kDa, showed dependence on calcium. BIL is an acidic protein with highest activity over the pH range of 4.0-7.0 and stable under heating to 70 degrees C. Fluorescence emission spectra showed tryptophan residues partially buried within the lectin structure. the percentages of secondary structure revealed by circular dichroism were 1% alpha-helix, 44% beta-sheet, 24% beta-turn and 31% unordered. BIL showed effective antibacterial activity against Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis with minimal inhibitory concentrations of 31.25, 62.25 and 125 mu g/mL, respectively. in conclusion, B. leucurus snake venom contains a galactoside-binding lectin with antibacterial activity. (C) 2011 Elsevier Inc. All rights reserved.Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)Univ Fed Pernambuco, Dept Bioquim, BR-50670420 Recife, PE, BrazilUniv Fed Bahia, Dept Zool, BR-40170210 Salvador, BA, BrazilUniversidade Federal de São Paulo, Dept Bioquim, BR-04044020 São Paulo, BrazilUniv Fed Pernambuco, Dept Zool, BR-50670420 Recife, PE, BrazilUniv Estadual Oeste Parana, Ctr Engn & Ciencias Exatas, BR-85903000 Toledo, Parana, BrazilUniversidade Federal de São Paulo, Dept Bioquim, BR-04044020 São Paulo, BrazilWeb of Scienc
Recommended from our members
Policing the legume-Rhizobium symbiosis: a critical test of partner choice
In legume-Rhizobium symbioses, specialised soil bacteria fix atmospheric nitrogen in return for carbon. However, ineffective strains can arise, making discrimination essential. Discrimination can occur via partner choice, where legumes prevent ineffective strains from entering, or via sanctioning, where plants provide fewer resources. Several studies have inferred that legumes exercise partner choice, but the rhizobia compared were not otherwise isogenic. To test when and how plants discriminate ineffective strains we developed sets of fixing and non-fixing strains that differed only in the expression of nifH - essential for nitrogen fixation - and could be visualised using marker genes. We show that the plant is unable to select against the non-fixing strain at the point of entry, but that non-fixing nodules are sanctioned. We also used the technique to characterise mixed nodules (containing both a fixing and a non-fixing strain), whose frequency could be predicted using a simple diffusion model. We discuss that sanctioning is likely to evolve in preference to partner choice in any symbiosis where partner quality cannot be adequately assessed until goods or services are actively exchanged
Development of a Surface Plasmon Resonance Biosensor for Real-Time Detection of Osteogenic Differentiation in Live Mesenchymal Stem Cells
Surface plasmon resonance (SPR) biosensors have been recognized as a useful tool and widely used for real-time dynamic analysis of molecular binding affinity because of its high sensitivity to the change of the refractive index of tested objects. The conventional methods in molecular biology to evaluate cell differentiation require cell lysis or fixation, which make investigation in live cells difficult. In addition, a certain amount of cells are needed in order to obtain adequate protein or messenger ribonucleic acid for various assays. To overcome this limitation, we developed a unique SPR-based biosensing apparatus for real-time detection of cell differentiation in live cells according to the differences of optical properties of the cell surface caused by specific antigen-antibody binding. In this study, we reported the application of this SPR-based system to evaluate the osteogenic differentiation of mesenchymal stem cells (MSCs). OB-cadherin expression, which is up-regulated during osteogenic differentiation, was targeted under our SPR system by conjugating antibodies against OB-cadherin on the surface of the object. A linear relationship between the duration of osteogenic induction and the difference in refractive angle shift with very high correlation coefficient was observed. To sum up, the SPR system and the protocol reported in this study can rapidly and accurately define osteogenic maturation of MSCs in a live cell and label-free manner with no need of cell breakage. This SPR biosensor will facilitate future advances in a vast array of fields in biomedical research and medical diagnosis
High susceptibility to lipopolysaccharide-induced lethal shock in encephalomyocarditis virus-infected mice
Secondary bacterial infection in humans is one of the pathological conditions requiring clinical attention. In this study, we examined the effect of lipopolysaccharide (LPS) on encephalomyocarditis virus (EMCV) infected mice. All mice inoculated with EMCV at 5 days before LPS challenge died within 24 h. LPS-induced TNF-α mRNA expression was significantly increased in the brain and heart at 5 days after EMCV infection. CD11b+/TLR4+ cell population in the heart was remarkably elevated at 5 days after EMCV infection, and sorted CD11b+ cells at 5 days after EMCV infection produced a large amount of TNF-α on LPS stimulation in vivo and in vitro. In conclusion, we found that the infiltration of CD11b+ cells into infected organs is involved in the subsequent LPS-induced lethal shock in viral encephalomyocarditis. This new experimental model can help define the mechanism by which secondary bacterial infection causes a lethal shock in viral encephalomyocarditis
Transcriptional Homeostasis of a Mangrove Species, Ceriops tagal, in Saline Environments, as Revealed by Microarray Analysis
<div><h3>Background</h3><p>Differential responses to the environmental stresses at the level of transcription play a critical role in adaptation. Mangrove species compose a dominant community in intertidal zones and form dense forests at the sea-land interface, and although the anatomical and physiological features associated with their salt-tolerant lifestyles have been well characterized, little is known about the impact of transcriptional phenotypes on their adaptation to these saline environments.</p> <h3>Methodology and Principal findings</h3><p>We report the time-course transcript profiles in the roots of a true mangrove species, <em>Ceriops tagal</em>, as revealed by a series of microarray experiments. The expression of a total of 432 transcripts changed significantly in the roots of <em>C. tagal</em> under salt shock, of which 83 had a more than 2-fold change and were further assembled into 59 unigenes. Global transcription was stable at the early stage of salt stress and then was gradually dysregulated with the increased duration of the stress. Importantly, a pair-wise comparison of predicted homologous gene pairs revealed that the transcriptional regulations of most of the differentially expressed genes were highly divergent in <em>C. tagal</em> from that in salt-sensitive species, <em>Arabidopsis thaliana</em>.</p> <h3>Conclusions/Significance</h3><p>This work suggests that transcriptional homeostasis and specific transcriptional regulation are major events in the roots of <em>C. tagal</em> when subjected to salt shock, which could contribute to the establishment of adaptation to saline environments and, thus, facilitate the salt-tolerant lifestyle of this mangrove species. Furthermore, the candidate genes underlying the adaptation were identified through comparative analyses. This study provides a foundation for dissecting the genetic basis of the adaptation of mangroves to intertidal environments.</p> </div
- …