56 research outputs found

    Interpretative and predictive modelling of Joint European Torus collisionality scans

    Get PDF
    Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as □(→┬E ) X □(→┬B ) shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Clinical guidance for Radioiodine Refractory Differentiated Thyroid Cancer

    No full text
    Prognosis from differentiated thyroid cancer is worse when the disease becomes refractory to radioiodine. Until recently, treatment options have been limited to local therapies such as surgery and radiotherapy, but the recent availability of systemic therapies now provides some potential for disease control. Multi-targeted kinase inhibitors (TKIs) including lenvatinib and sorafenib have been shown to improve progression free survival in Phase III clinical trials, but are also associated with a spectrum of adverse effects. Other TKIs have been utilised as "redifferentiation" agents, increasing sodium iodide symporter expression in metastases and thus restoring radioiodine avidity. Some patients whose disease progresses on initial TKI therapy will still respond to a different TKI and clinical trials currently in progress will clarify the best options for such patients. As these drugs are not inexpensive, care needs to be taken to minimize not only biological but also financial toxicity. In this review we examine the basic biology of radioiodine refractory disease, and discuss optimal treatment approaches, with specific focus on choice and timing of TKI treatment. This clinical field remains fluid, and directions for future research include exploring biomarkers and considering adjuvant TKI use in certain patient groups. This article is protected by copyright. All rights reserved

    New era: Prophylactic surgery for patients with multiple endocrine neoplasia-2A

    No full text
    Background: The surgical management of patients with multiple endocrine neoplasia-2A (MEN-2A) continues to evolve with specific genotype-phenotype correlations allowing for a more tailored approach. In this study, we report the surgical management of one of the largest MEN-2A families with a rearranged during transfection (RET) codon 804 mutation. Method: This is a cohort study comprising all at-risk kindred within a single known MEN-2A family. Prophylactic total thyroidectomy with lymph node dissection was recommended to all mutation carriers aged 5 years and older. Results: There were a total of 48 at-risk individuals in the MEN-2A kindred, with 22 patients undergoing thyroidectomy after appropriate preoperative evaluation. A total of 9 patients had medullary thyroid cancer including 5 with a normal preoperative calcitonin level. A total of 11 patients had C-cell hyperplasia and 7 showed histological evidence of parathyroid disease. Only the index case had a phaeochromocytoma. Conclusion: Genetic testing for germline mutations in the RET proto-oncogene has allowed precise identification of affected RET carriers and provided the opportunity for prophylactic or 'preclinical' surgery to treat and in fact to prevent medullary thyroid cancer. This concept of prophylactic surgery based on a genetic test is likely to be applied more widely as the tools of molecular biology advance

    Preparation of chitosan nanoparticles by spray drying and their antibacterial activity

    No full text
    [[abstract]]Chitosan nanoparticles were prepared from chitosan with different molecular weight by spray drying method. The morphology of chitosan nanoparticles were characterized by SEM and size distribution and zeta potential values were determined. Effect of chitosan solution concentrations, molecular weight of chitosan (MMW, HMW and VHMW) and size of spray dryer nozzles on average size, size distribution and zeta potential values of chitosan nanoparticles were investigated. Moreover, the effect chitosan nanoparticles and chitosan nanoparticles/amoxicillin complex on Staphylococcus aureus was also tested. The results showed that the average size of chitosan nanoparticles were in the range of 95.5 to 395 nm and zeta potential values of 39.3 to 45.7 mV depended on concentration and molecular weight of chitosan. The lower concentration and molecular weight of chitosan were used, the smaller size of chitosan nanoparticles and the higher zeta potential values were obtained. The testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited the growth of bacteria with the minimum inhibitory concentration (MIC) of 20µg/mL, which were lower than that of chitosan solution and amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on size, zeta potential values and molecular weight of chitosan. Complex of chitosan nanoparticles/amoxicillin could improve antibacterial activity of amoxicillin.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex

    No full text
    [[abstract]]Chitosan nanoparticles were prepared from chitosan with various molecular weights by tripolyphosphate (TPP) ionic gelation combined with a spray drying method. The morphologies and characteristics of chitosan nanoparticles were determined by TEM, FE-SEM and from their mean sizes and zeta potentials. The effect of chitosan molecular weight (130, 276, 760 and 1200 cPs) and size of spray dryer nozzle (4.0, 5.5 and 7.0 µm) on mean size, size distribution and zeta potential values of chitosan nanoparticles was investigated. The results showed that the mean size of chitosan nanoparticles was in the range of 166–1230 nm and the zeta potential value ranged from 34.9 to 59 mV, depending on the molecular weight of chitosan and size of the spray dryer nozzles. The lower the molecular weight of chitosan, the smaller the size of the chitosan nanoparticles and the higher the zeta potential. A test for the antibacterial activity of chitosan nanoparticles (only) and a chitosan nanoparticle–amoxicillin complex against Streptococcus pneumoniae was also conducted. The results indicated that a smaller chitosan nanoparticle and higher zeta potential showed higher antibacterial activity. The chitosan nanoparticle–amoxicillin complex resulted in improved antibacterial activity as compared to amoxicillin and chitosan nanopaticles alone. Using a chitosan nanoparticle–amoxicillin complex could reduce by three times the dosage of amoxicillin while still completely inhibiting S. pneumoniae.[[notice]]補正完
    corecore