669 research outputs found

    Design Thinking: Project Portfolio Management and Simulation – A Creative Mix for Research

    Full text link
    This paper takes de Bono’s explanation of ‘design thinking’ as the starting point for a report on a doctoral research project that began with a conventional ‘why?’ question, and then, instead of looking for an ‘explanation’, chose to look forward in time to establish an understanding of ‘how to’ think differently about a recurring problem. The catalyst for this work was observation of otherwise competent managers making desperately wrong decisions when good decision making was crucial to their company’s future. The initial choice to ‘look forward’ when designing the research strategy was made well before there was a clear understanding of what was being observed. Given that trajectory, this paper explores the process by which a simulation was created and then used in conjunction with a comparatively new approach to data collection (Explanation looks backwards and design looks forward [1].)

    Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping

    Get PDF
    Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior

    Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles

    Get PDF
    Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level

    The impact on staff of working with personality disordered offenders: A systematic review

    Get PDF
    © 2015 Freestone et al. Background: Personality disordered offenders (PDOs) are generally considered difficult to manage and to have a negative impact on staff working with them. Aims: This study aimed to provide an overview of studies examining the impact on staff of working with PDOs, identify impact areas associated with working with PDOs, identify gaps in existing research,and direct future research efforts. Methods: The authors conducted a systematic review of the English-language literature from 1964-2014 across 20 databases in the medical and social sciences. Results: 27 papers were included in the review. Studies identified negative impacts upon staff including: negative attitudes, burnout, stress, negative counter-transferential experiences; two studies found positive impacts of job excitement and satisfaction, and the evidence related to perceived risk of violence from PDOs was equivocal. Studies demonstrated considerable heterogeneity and meta-analysis was not possible. The overall level of identified evidence was low: 23 studies (85%) were descriptive only, and only one adequately powered cohort study was found. Conclusions: The review identified a significant amount of descriptive literature, but only one cohort study and no trials or previous systematic reviews of literatures. Clinicians and managers working with PDOs should be aware of the potential impacts identified, but there is an urgent need for further research focusing on the robust evaluation of interventions to minimise harm to staff working with offenders who suffer from personality disorder Copyright

    Quantum Computation Relative to Oracles

    Get PDF
    The study of the power and limitations of quantum computation remains a major challenge in complexity theory. Key questions revolve around the quantum complexity classes EQP, BQP, NQP, and their derivatives. This paper presents new relativized worlds in which (i) co-RP is not a subset of NQE, (ii) P=BQP and UP=EXP, (iii) P=EQP and RP=EXP, and (iv) EQP is not a subset of the union of Sigma{p}{2} and Pi{p}{2}. We also show a partial answer to the question of whether Almost-BQP=BQP

    Adverse reactions to metal debris occur with all types of hip replacement not just metal-on-metal hips: a retrospective observational study of 3340 revisions for adverse reactions to metal debris from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man.

    Get PDF
    BACKGROUND: Adverse reactions to metal debris (ARMD) have resulted in the high short-term failure rates observed with metal-on-metal hip replacements. ARMD has recently been reported in non-metal-on-metal total hip replacements (non-MoM THRs) in a number of small cohort studies. However the true magnitude of this complication in non-MoM THRs remains unknown. We used a nationwide database to determine the risk of ARMD revision in all non-MoM THRs, and compared patient and surgical factors associated with ARMD revision between non-MoM and MoM hips. METHODS: We performed a retrospective observational study using data from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. All primary hip replacements undergoing revision surgery for ARMD were included (n = 3,340). ARMD revision risk in non-MoM THRs was compared between different commonly implanted bearing surfaces and femoral head sizes (Chi-squared test). Differences in patient and surgical factors between non-MoM hips and MoM hips revised for ARMD were also analysed (Chi-squared test and unpaired t-test). RESULTS: Of all ARMD revisions, 7.5% (n = 249) had non-MoM bearing surfaces. The relative risk of ARMD revision was 2.35 times (95% CI 1.76-3.11) higher in ceramic-on-ceramic bearings compared with hard-on-soft bearings (0.055 vs. 0.024%; p < 0.001), and 2.80 times (95% CI 1.74-4.36) higher in 36 mm metal-on-polyethylene bearings compared to 28 mm and 32 mm metal-on-polyethylene bearings (0.058 vs. 0.021%; p < 0.001). ARMD revisions were performed earlier in non-MoM hips compared to MoM hips (mean 3.6-years vs. 5.6-years; p < 0.0001). Non-MoM hips had more abnormal findings at revision (63.1 vs. 35.7%; p < 0.001), and more intra-operative adverse events (6.4 vs. 1.6%; p < 0.001) compared to MoM hips. CONCLUSIONS: Although the overall risk of ARMD revision surgery in non-MoM THRs appears low, this risk is increasing, and is significantly higher in ceramic-on-ceramic THRs and 36 mm metal-on-polyethylene THRs. ARMD may therefore represent a significant clinical problem in non-MoM THRs
    corecore