2,203 research outputs found

    Towards Logical Specification of Statistical Machine Learning

    Full text link
    We introduce a logical approach to formalizing statistical properties of machine learning. Specifically, we propose a formal model for statistical classification based on a Kripke model, and formalize various notions of classification performance, robustness, and fairness of classifiers by using epistemic logic. Then we show some relationships among properties of classifiers and those between classification performance and robustness, which suggests robustness-related properties that have not been formalized in the literature as far as we know. To formalize fairness properties, we define a notion of counterfactual knowledge and show techniques to formalize conditional indistinguishability by using counterfactual epistemic operators. As far as we know, this is the first work that uses logical formulas to express statistical properties of machine learning, and that provides epistemic (resp. counterfactually epistemic) views on robustness (resp. fairness) of classifiers.Comment: SEFM'19 conference paper (full version with errors corrected

    Statistical Epistemic Logic

    Full text link
    We introduce a modal logic for describing statistical knowledge, which we call statistical epistemic logic. We propose a Kripke model dealing with probability distributions and stochastic assignments, and show a stochastic semantics for the logic. To our knowledge, this is the first semantics for modal logic that can express the statistical knowledge dependent on non-deterministic inputs and the statistical significance of observed results. By using statistical epistemic logic, we express a notion of statistical secrecy with a confidence level. We also show that this logic is useful to formalize statistical hypothesis testing and differential privacy in a simple and abstract manner

    Holographic Anyons in the ABJM Theory

    Full text link
    We consider the holographic anyons in the ABJM theory from three different aspects of AdS/CFT correspondence. First, we identify the holographic anyons by using the field equations of supergravity, including the Chern-Simons terms of the probe branes. We find that the composite of Dp-branes wrapped over CP3 with the worldvolume magnetic fields can be the anyons. Next, we discuss the possible candidates of the dual anyonic operators on the CFT side, and find the agreement of their anyonic phases with the supergravity analysis. Finally, we try to construct the brane profile for the holographic anyons by solving the equations of motion and Killing spinor equations for the embedding profile of the wrapped branes. As a by product, we find a BPS spiky brane for the dual baryons in the ABJM theory.Comment: 1+33 pages, 3 figures; v2 discussion for D4-D6 case added, references added; v3 comments adde

    Charged particle-like branes in ABJM

    Get PDF
    We study the effect of adding lower dimensional brane charges to the 't Hooft monopole, di-baryon and baryon vertex configurations in AdS4×P3AdS_4 \times \mathbb{P}^3. We show that these configurations capture the background fluxes in a way that depends on the induced charges, and therefore, require additional fundamental strings in order to cancel the worldvolume tadpoles. The study of the dynamics reveals that the charges must lie inside some interval in order to find well defined configurations, a situation familiar from the baryon vertex in AdS5×S5AdS_5 \times S^5 with charges. For the baryon vertex and the di-baryon the number of fundamental strings must also lie inside an allowed interval. Our configurations are sensitive to the flat BB-field recently suggested in the literature. We make some comments on its possible role. We also discuss how these configurations are modified in the presence of a non-zero Romans mass.Comment: 31 pages, 14 figures, discussion of charges improved, published versio

    ABJM Baryon Stability and Myers effect

    Get PDF
    We consider magnetically charged baryon vertex like configurations in AdS^4 X CP^3 with a reduced number of quarks l. We show that these configurations are solutions to the classical equations of motion and are stable beyond a critical value of l. Given that the magnetic flux dissolves D0-brane charge it is possible to give a microscopical description in terms of D0-branes expanding into fuzzy CP^n spaces by Myers dielectric effect. Using this description we are able to explore the region of finite 't Hooft coupling.Comment: 29 pages, Latex; minor changes; version to appear in JHE

    Efimov effect in quantum magnets

    Full text link
    Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus opens up new avenues for universal few-body physics in condensed matter systems.Comment: 7 pages, 5 figures; published versio

    Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS

    Effects of automated alerts on unnecessarily repeated serology tests in a cardiovascular surgery department: a time series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory testing is frequently unnecessary, particularly repetitive testing. Among the interventions proposed to reduce unnecessary testing, Computerized Decision Support Systems (CDSS) have been shown to be effective, but their impact depends on their technical characteristics. The objective of the study was to evaluate the impact of a Serology-CDSS providing point of care reminders of previous existing serology results, embedded in a Computerized Physician Order Entry at a university teaching hospital in Paris, France.</p> <p>Methods</p> <p>A CDSS was implemented in the Cardiovascular Surgery department of the hospital in order to decrease inappropriate repetitions of viral serology tests (HBV).</p> <p>A time series analysis was performed to assess the impact of the alert on physicians' practices. The study took place between January 2004 and December 2007. The primary outcome was the proportion of unnecessarily repeated HBs antigen tests over the periods of the study. A test was considered unnecessary when it was ordered within 90 days after a previous test for the same patient. A secondary outcome was the proportion of potentially unnecessary HBs antigen test orders cancelled after an alert display.</p> <p>Results</p> <p>In the pre-intervention period, 3,480 viral serology tests were ordered, of which 538 (15.5%) were unnecessarily repeated. During the intervention period, of the 2,095 HBs antigen tests performed, 330 unnecessary repetitions (15.8%) were observed. Before the intervention, the mean proportion of unnecessarily repeated HBs antigen tests increased by 0.4% per month (absolute increase, 95% CI 0.2% to 0.6%, <it>p </it>< 0.001). After the intervention, a significant trend change occurred, with a monthly difference estimated at -0.4% (95% CI -0.7% to -0.1%, <it>p </it>= 0.02) resulting in a stable proportion of unnecessarily repeated HBs antigen tests. A total of 380 unnecessary tests were ordered among 500 alerts displayed (compliance rate 24%).</p> <p>Conclusions</p> <p>The proportion of unnecessarily repeated tests immediately dropped after CDSS implementation and remained stable, contrasting with the significant continuous increase observed before. The compliance rate confirmed the effect of the alerts. It is necessary to continue experimentation with dedicated systems in order to improve understanding of the diversity of CDSS and their impact on clinical practice.</p

    Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites

    Get PDF
    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be ‘evolution-proof’ than interventions directed at killing males or females. Given the drive to develop medical interventions that interfere with parasite mating, our data and theoretical models have important implications
    corecore