31 research outputs found
Strong quantum memory at resonant Fermi edges revealed by shot noise
Studies of non-equilibrium current fluctuations enable assessing correlations
involved in quantum transport through nanoscale conductors. They provide
additional information to the mean current on charge statistics and the
presence of coherence, dissipation, disorder, or entanglement. Shot noise,
being a temporal integral of the current autocorrelation function, reveals
dynamical information. In particular, it detects presence of non-Markovian
dynamics, i.e., memory, within open systems, which has been subject of many
current theoretical studies. We report on low-temperature shot noise
measurements of electronic transport through InAs quantum dots in the
Fermi-edge singularity regime and show that it exhibits strong memory effects
caused by quantum correlations between the dot and fermionic reservoirs. Our
work, apart from addressing noise in archetypical strongly correlated system of
prime interest, discloses generic quantum dynamical mechanism occurring at
interacting resonant Fermi edges.Comment: 6 pages, 3 figure
Quantum anti-Zeno effect without wave function reduction
We study the measurement-induced enhancement of the spontaneous decay (called
quantum anti-Zeno effect) for a two-level subsystem, where measurements are
treated as couplings between the excited state and an auxiliary state rather
than the von Neumann's wave function reduction. The photon radiated in a fast
decay of the atom, from the auxiliary state to the excited state, triggers a
quasi-measurement, as opposed to a projection measurement. Our use of the term
"quasi-measurement" refers to a "coupling-based measurement". Such frequent
quasi-measurements result in an exponential decay of the survival probability
of atomic initial state with a photon emission following each
quasi-measurement. Our calculations show that the effective decay rate is of
the same form as the one based on projection measurements. What is more
important, the survival probability of the atomic initial state which is
obtained by tracing over all the photon states is equivalent to the survival
probability of the atomic initial state with a photon emission following each
quasi-measurement to the order under consideration. That is because the
contributions from those states with photon number less than the number of
quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure
The essential mycobacterial genes, fabG1 and fabG4, encode 3-oxoacyl-thioester reductases that are functional in yeast mitochondrial fatty acid synthase type 2
Mycobacterium tuberculosis represents a severe threat to human health worldwide. Therefore, it is important to expand our knowledge of vital mycobacterial processes, such as that effected by fatty acid synthase type 2 (FASII), as well as to uncover novel ones. Mycobacterial FASII undertakes mycolic acid biosynthesis, which relies on a set of essential enzymes, including 3-oxoacyl-AcpM reductase FabG1/Rv1483. However, the M. tuberculosis genome encodes four additional FabG homologs, designated FabG2–FabG5, whose functions have hitherto not been characterized in detail. Of the four candidates, FabG4/Rv0242c was recently shown to be essential for the survival of M. bovis BCG. The present work was initiated by assessing the suitability of yeast oar1Δ mutant cells lacking mitochondrial 3-oxoacyl-ACP reductase activity to act as a surrogate system for expressing FabG1/MabA directed to the mitochondria. Mutant yeast cells producing this targeted FabG1 variant were essentially wild type for all of the chronicled phenotype characteristics, including respiratory growth on glycerol medium, cytochrome assembly and lipoid acid production. This indicated that within the framework of de novo fatty acid biosynthesis in yeast mitochondria, FabG1 was able to act on shorter (C4) acyl substrates than was previously proposed (C8–20) during mycolic acid biosynthesis in M. tuberculosis. Thereafter, FabG2–FabG5 were expressed as mitochondrial proteins in the oar1Δ strain, and FabG4 was found to complement the mutant phenotype and contain high levels of 3-oxoacyl-thioester reductase activity. Hence, like FabG1, FabG4 is also an essential, physiologically functional 3-oxoacyl-thioester reductase, albeit the latter’s involvement in mycobacterial FASII remains to be explored
Synthetic Spectrum Constraints on a Model of the Cataclysmic Variable QU Carinae
Neither standard model SEDs nor truncated standard model SEDs fit observed
spectra of QU Carinae with acceptable accuracy over the range 900\AA to
3000\AA. Non-standard model SEDs fit the observation set accurately. The
non-standard accretion disk models have a hot region extending from the white
dwarf to ,a narrow intermediate temperature annulus, and an
isothermal remainder to the tidal cutoff boundary. The models include a range
of values between and
and limiting values of
between and . A solution with is consistent with an empirical mass-period relation. The set
of models agree on a limited range of possible isothermal region
values between 14,000K and 18,000K. The model-to-model residuals are so similar
that it is not possible to choose a best model. The Hipparcos distance, 610 pc,
is representative of the model results. The orbital inclination is between
40\arcdeg and 60\arcdeg.Comment: 52 pages, 19 Figure
A C. elegans Model for Mitochondrial Fatty Acid Synthase II: The Longevity-Associated Gene W09H1.5/mecr-1 Encodes a 2-trans-Enoyl-Thioester Reductase
Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated specifically to curtailing mitochondrial FASII in metazoans. The availability of affected survivors will help to position C. elegans as an excellent model for future pursuits in the emerging field of mitochondrial FASII research
Post-stenotic aortic dilatation
Aortic stenosis is the most common valvular heart disease affecting up to 4% of the elderly population. It can be associated with dilatation of the ascending aorta and subsequent dissection. Post-stenotic dilatation is seen in patients with AS and/or aortic regurgitation, patients with a haemodynamically normal bicuspid aortic valve and following aortic valve replacement. Controversy exists as to whether to replace the aortic root and ascending aorta at the time of aortic valve replacement, an operation that potentially carries a higher morbidity and mortality. The aetiology of post-stenotic aortic dilatation remains controversial. It may be due to haemodynamic factors caused by a stenotic valve, involving high velocity and turbulent flow downstream of the stenosis, or due to intrinsic pathology of the aortic wall. This may involve an abnormality in the process of extracellular matrix remodelling in the aortic wall including inadequate synthesis, degradation and transport of extracellular matrix proteins. This article reviews the aetiology, pathology and management of patients with post-stenotic aortic dilatation
Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance
<p>Abstract</p> <p>Background</p> <p>Congenital Bicuspid Aortic Valve (BAV) is a significant risk factor for serious complications including valve dysfunction, aortic dilatation, dissection, and sudden death. Clinical tools for identification and monitoring of BAV patients at high risk for development of aortic dilatation, an early complication, are not available.</p> <p>Methods</p> <p>This paper reports an investigation in 18 pediatric BAV patients and 10 normal controls of links between abnormal blood flow patterns in the ascending aorta and aortic dilatation using velocity-encoded cardiovascular magnetic resonance. Blood flow patterns were quantitatively expressed in the angle between systolic left ventricular outflow and the aortic root channel axis, and also correlated with known biochemical markers of vessel wall disease.</p> <p>Results</p> <p>The data confirm larger ascending aortas in BAV patients than in controls, and show more angled LV outflow in BAV (17.54 ± 0.87 degrees) than controls (10.01 ± 1.29) (p = 0.01). Significant correlation of systolic LV outflow jet angles with dilatation was found at different levels of the aorta in BAV patients STJ: r = 0.386 (N = 18, p = 0.048), AAO: r = 0.536 (N = 18, p = 0.022), and stronger correlation was found with patients and controls combined into one population: SOV: r = 0.405 (N = 28, p = 0.033), STJ: r = 0.562 (N = 28, p = 0.002), and AAO r = 0.645 (N = 28, p < 0.001). Dilatation and the flow jet angle were also found to correlate with plasma levels of matrix metallo-proteinase 2.</p> <p>Conclusions</p> <p>The results of this study provide new insights into the pathophysiological processes underlying aortic dilatation in BAV patients. These results show a possible path towards the development of clinical risk stratification protocols in order to reduce morbidity and mortality for this common congenital heart defect.</p
A Strategic Thinking of the Issues in Cost Management of FB Real Estate Company
摘要 论文结合FB房地产公司开发项目遇到的主要问题:如何选择项目开发的成本管理战略以获取成本竞争优势?成本管理效果不佳的问题:如成本核算数据不准确不能及时反映项目产品的成本状况、项目开发预算与实际支出差异大、产品的成本与利润不清楚、项目间成本不可比、成本管理不能及时对市场变化进行调整和企业利润被侵蚀的成本失控问题如何解决?怎么对异地项目开发进行成本控制及风险管理?怎样创新管理针对房地产成本管理的疑难问题展开战略分析研究,通过对解决问题的相关因素分析得出解决方案,在某项目开发中进行应用取得成功以验证其可行性。 论文以某项目开发针对成本管理中存在的疑难问题,以企业成本战略管理方法的“五力分析法...Abstract This article is mainly focused on the following topics of FB Real Estate Company: how to obtain the competitive advantage of project management by carrying on effective cost management strategies? How to change the situation of ineffective cost management, such as the data can't reflect the cost of the project accurately and there is a huge gap between the project's budget and actual...学位:工商管理硕士院系专业:管理学院高级经理教育中心(EMBA项目)_高级管理人员工商管理硕士(EMBA)学号:X200715612
