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Abstract

The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum
dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called ‘open’ interferometer as first proposed by
Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by
additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple
two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of
draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a
meaningful theoretical study of the QD transmittance phase in ‘closed’ interferometers (i.e., connected only to source
and drain leads). By putting together data from existing literature and giving some new proofs, we show both
analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the
‘bare’ QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the
Fano parameters have the same sign, the transmittance phase of the QD exhibits a π lapse. Therefore, closed
mesoscopic interferometers can be used to address the ‘universal phase lapse’ problem. Moreover, the data from
already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses.
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Background
The phase of the wave function (of an electron, for
instance) is a pure quantummechanical property, without
a direct correspondence in classical physics. The phase
coherence actually lies in the very definition of meso-
scopic physics and plays a key role in phenomena such
as quantum interference or bonding of molecular orbitals.
Another reason for the increasing interest in the phase
problem is a number of intriguing, and so far unexplained,
results of the phase-measuring experiments, such as the
phase lapse problem (of the transmittance phase between
the resonances of a quantum dot, QD) which was called by
some authors ‘the longest standing puzzle in mesoscopic
physics’ (see e.g., [1]).
Although they are probably obvious for most readers,

we consider it useful (for the sake of completeness) to
start by briefly defining some terms commonly used in the
mesoscopic phase measurement problem:
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1. Transmittance phase: In the plane wave scattering
image, the wave function of an incoming electron
can be considered to be eikr and it changes to teikr
after tunneling through a QD; then |t|2 is the
transmittance amplitude and Arg[t] is the
transmittance phase.

2. Closed/open interferometers: A closed
interferometer is actually a mesoscopic ring
connected to two leads, also named two-terminal
interferometer. In contrast, an open interferometer
has supplementary terminals called base zones with
the aim to absorb the electrons scattered at contacts
and to forbid multiple encirclements of the ring.

3. The phase lapse problem: The transmittance phase
was experimentally found to exhibit phase lapses of
π between any pairs of resonances [2], which is a
puzzling aspect that did not receive a satisfactory
explanation. The only exception was presented in the
experiment of Avinun-Kalish et al. [3], for a
few-electron quantum dot.

4. Fano parameter: If a variable gate potential is applied
on a QD that is inserted in one arm of an
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Aharonov-Bohm (AB) interferometer, the result in
conductance would be asymmetric Fano resonances,
with the general equation G ≈ (ε + q)2/(ε2 + 1), q
being called the Fano parameter (ε is proportional to
the dot energy levels and can be varied by an applied
gate potential - see ‘Results and discussion’ Section).

In a first attempt to extract the transmittance phase,
Yacoby et al. [4] performed transport measurements on
a closed interferometer with a QD inserted in one arm,
the phase being extracted from a simple two-path interfer-
ence formula. The main experimental problem, however,
with the ‘closed’ set-up is that the electrons encircle the
ring more than once, blurring the single-tunneling phase
information.
The problem was solved by Schuster et al. [2] who

‘opened’ the interferometer by adding supplementary base
zones to absorb the deflected electrons and ideally to
ensure just a single interference. In this way, one can mea-
sure not only the amplitude of the transmission, but also
its phase, which is extracted from the shift of the AB
conductance oscillations.
The Friedel sum rule [5] (see also [6-8]) and other simple

models, like the 1D double barrier (see Figure 14 in [9]),
suggest that the measured phase increases with π on each
QD resonance and remains at a constant value between
resonances. Surprisingly, the experiment [2] found instead
that between any two consecutive conductance peaks, the
transmission phase displays a jump (phase lapse) of π .
The transmittance phase measurements in open inter-
ferometers was taken a step further by Avinun-Kalish et
al. [3] who controlled the QD occupancy via a nearby
quantum point contact. The QD was first depleted of
electrons and then it is gradually filled. For the first few
electrons added to the dot (N < 10), the authors reported
a non-universality of the phase behavior, which are varied
on some resonances and between them with π or frac-
tions of π . This regime was called ‘mesoscopic’. In the
multi-electron regime, the ‘universal’ phase lapse with π

emerges, as obtained in all the previous experiments.
Many theoretical papers used discrete models for the

analysis of the transmittance phase (see, e.g., [9-13]), espe-
cially for the non-interacting case. Among the first papers
addressing theoretically the behavior of the phase were in
[10,11], where it was shown that phase lapses between two
resonances can be associated with a zero value of the con-
ductance at the corresponding energy, and this happens
between consecutive resonances with the same parity.
The experiments by Avinun-Kalish et al. [3] generated a

new direction of theoretical research employing sophisti-
cated many-body techniques to explain the phase behav-
ior in the few-electron regime [14-16]. Other authors
addressed the crossover from mesoscopic to universal
regime [17-19]. The emergence of the universal phase

lapses regime was explained by some authors as a ‘popu-
lation switching’ inside the quantum dot [20,21]. In [22]
a set-up consisting of a double-dot mesoscopic ring and
a nearby charge detector was proposed. It is shown that
the ‘bare dot’ phase evolution can be extracted from the
second harmonic of the AB oscillations.
At this point, it is important to stress that even if the

open interferometer solves the problem of multiple inter-
ferences, it also has a number of important drawbacks
from experimental point of view, in comparison with the
closed interferometer: a substantially reduced signal and
some uncertainties regarding the influence of the base
zones themselves on the measured phase. From theoreti-
cal point of view, the open interferometer is difficult to be
described by a simple Hamiltonian, even if some efforts
have been made [23].
Bearing in mind the mentioned drawbacks of the open

interferometer, our goal in this paper is to show what
phase information can be extracted from closed inter-
ferometers. We prove that the sign of Fano parameter q
carries the important information about the existence (or
not) of a phase lapse with π of the ‘bare’ dot transmittance.
The correspondence we shall prove can be used to inter-

pret already existing experimental results that used closed
interferometers in the context of the Fano effect, but did
not discuss phase implications. The experimental data
suggest that, even if the phase lapses are indeed present
almost between any pair of resonances, they are not actu-
ally universal; as consecutive out-of phase resonances
are also present (see [24,25] where a closed interferome-
ter were used) and between those resonances, the phase
should remain constant.
The outline of the paper is as follows: The Methods and

Results and discussion Sections contain the analytical and
numerical results connecting the sign of the Fano parame-
ter to the phase lapses of the ‘bare’ dot transmittance, and
the last Section presents the Conclusions.

Methods
We consider a multi-level quantum dot embedded in an
mesoscopic interferometer (see Figure 1). The system will
be described by a lattice model, the QD being of arbitrary
shape and coupled to the ring in the sites iα and iβ . For
simplicity we consider that the ‘ring’ is quite simple and
consist of only two sites α and β connected by the hopping
constant ταβ . Then the Hamiltonian describing the meso-
scopic interferometer and the left and right leads coupled
to it reads as follows:

H = HD + HR +
∑

γ=α,β
HLγ + HDR + HT, (1)

where HD and HR describe the QD (of arbitrary shape,
formally a collection of sites with hopping between the
nearest neighbors, denoted by the symbol 〈〉) and the ring
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Figure 1 QD connected to sites α and β and to each other
forming a closed interferometer. Scheme of a QD connected to
the sites α and β connected to each other to form a closed
interferometer. The notations are the same as those used in text.

(consisting just of two sites, interconnected, see Figure 1),
while HLγ , HT, and HDR represent the leads Hamiltonian
and the tunneling Hamiltonians, respectively:

HD =
∑
〈i,j〉

|i〉〈j|

HR = ταβ |α〉〈β| + h.c.

HLγ =
∑

kLγ=α,β

εk|kLγ 〉〈kLγ |

HT = τ0
∑

kLγ=α,β

|kLγ 〉〈γ | + h.c.

HDR = τ(|α〉〈iα| + |β〉〈iβ |) + h.c. (2)

The diagonal energies for the dot sites and those for
the two ring sites have been considered zero and have not
been written explicitly, for briefness.

Results and discussion
Let us first briefly review an important result obtained first
in [10], for the case of a QD connected directly to leads
(and not imbedded in an interferometer). The mentioned
result connects the phase evolution between consecutive
resonances (more precisely, the existence or not of a phase
lapse with π ) with the parity of the respective resonances.
Then we shall insert the same QD in an interferometer
and prove that the information on the resonances parity
can be extracted from the sign of the Fano parameter for
consecutive Fano lines. We remind here that the parity
of a resonance associated to the nth state �n of the dot
is defined to be the sign of the product �n(iα)�n(iβ). In
the absence of Coulomb interaction the conductance is
given by the Landauer formula (EF is the Fermi level of the
leads):

G(EF) = 2e2

h
4	2

∣∣∣GD
iα iβ

∣∣∣
2
, (3)

where GD is the effective retarded Green function
GD(E) = (E−HD+
L)−1, and
L = i	(|iα〉〈iα|+|iβ〉〈iβ |)
is the lead’s self-energy with 	 = 2πρ0τ

2
0 , ρ0 being the

density of states in the leads. In the above equation, we
did not write explicitly the energy dependence of the right
hand term and will omit it also in the following sections,
whenever the meaning is obvious.
Levy Yeyati and Büttiker [10] approximated the Green

function as follows (En is the energy of the state �n):

GD
iα iβ (EF) ≈

∑
n

�n(iα)�n(iβ)

EF − En + i	[�2
n(iα) + �2

n(iβ)]
, (4)

which means that, in the limit of low coupling, the Green
function can be written as a sum of resonances, and fur-
thermore, the parameters of interest have simple expres-
sions. Now the question was whether the above formula
contains information about the phase evolution between
resonances, more precisely about the presence (absence)
of a phase lapse. Keeping in mind that the Green func-
tion (Equation 4) is a complex number, a phase lapse with
π appears if both the real and the imaginary part change
their sign simultaneously. This means that, in turn, the
Green function has a zero at the phase lapse position, so
one has to look for the zeros of the Green function.
Mathematically, it easy to show that the Green function

in Equation 4 can vanish between consecutive resonances
if and only if their numerators have the same sign. We
have to keep in mind that the real part of the denomina-
tors have opposite signs for consecutive resonances (say,
εn and εn+1), if the Fermi level is between the resonances
(i.e., εn < EF < εn+1). Thus, if one wants the sum of two
neighboring resonances to vanish, their nominators must
have the same sign [10]. Therefore, the existence (or not)
of zeros in transmittance, or equivalently, a phase lapse
of π between resonances can be associated to the same
(different) parity of consecutive resonances.
It is important to mention that, even if the simple

decomposition in Equation 4 is correct in the limit of low
coupling, the fact that the conductance function can be
written as a sum of resonances is always true; also, the
positions of the Green function’s zeros are independent of
the coupling strength, as was proven in [10].
We now turn to the interferometer geometry. In [26]

(where the same system is considered as here, namely a
QD inserted in a closed interferometer), it was shown that
the conductance can be expressed in terms of two effec-
tive Green functions for the embedded dot and for the two
sites ring:

G = 2e2

h
4	2

∣∣∣∣∣∣
G̃R

αβ + τ 2
∑

γ ,γ ′=α,β
G̃R

αγ G̃
D
iγ iγ ′ G̃

R
γ ′β

∣∣∣∣∣∣

2

, (5)
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where G̃D(E) = (E − HD + 
D)−1 and 
D =
−τ 2

∑
γ ,γ ′=α,β |iγ 〉G̃R

γ γ ′ 〈iγ ′ |. For our simplified model, we
can calculate straightforwardly (we assumed the diagonal
energies in the ring sites to be zero, and also EF = 0):

G̃R
αβ = G̃R

βα = −ταβ/(τ 2αβ + 	2) =: g1, (6)

G̃R
αα = G̃R

ββ = −i	/(τ 2αβ + 	2) =: g2,

Finally, using the notations τnα := τ�n(iα) and τnβ :=
τ�n(iβ) one obtains


D
n = −

∑
γ γ ′=α,β

τnγ τnγ ′G̃R
γ γ ′ , (7)

for the self-energy corresponding to the dot level εn. Intro-
ducing in Equation 5 the required expressions which one
arrives at:

G = 2e2

h
4	2

∣∣∣∣∣g1 +
∑
n

(τ 2nα + τ 2nβ)g1g2 + τnατnβ(g21 + g22 )
−En − (τ 2nα + τ 2nβ)g2 − 2τnατnβg1

∣∣∣∣∣
2

.

(8)

For well-separated resonances (meaning that the distance
between resonances exceeds the resonances width), the
summation symbol
n can be placed in front of the square
modulus. Then inside the modulus, we bring the terms to
the same denominator as follows:

G = 2e2

h
4	2

∑
n

∣∣∣∣∣
−g1En + τnατnβ(g22 − g21)

−En − (τ 2nα + τ 2nβ)g2 − 2τnατnβg1

∣∣∣∣∣
2

(9)

By replacing g1 and g2 in Equation 9, one can convince
himself after somemanipulation that the conductance can
be expressed as a sum of Fano resonances [27]:

G = A
∑
n

(εn + qn)2

ε2n + 1
(10)

with the following notations

qn = τnατnβ

(
ταβ

	
− 	

ταβ

)

(τ 2nα + τ 2nβ)
, A = 2e2

h
4	2 τ 2αβ

(τ 2αβ + 	2)2
,

εn = τ 2αβ + 	2

	(τ 2nα + τ 2nβ)
En − 2

τnατnβταβ

	(τ 2nα + τ 2nβ)
. (11)

The above expression for qn is the main result of our
paper, which shows [keeping in mind that τnατnβ =
τ 2�n(iα)�n(iβ)] that the parity information can be
extracted from the sign of the Fano parameter.
The sign of the quantity

(
ταβ

	
− 	

ταβ

)
is not important

because it is independent of the resonance index n, but
what is important is the relative signs of q (or of the pari-
ties) for different resonances. One should mention that in
the presence of a magnetic flux applied on the AB inter-
ferometer, the Fano parameter becomes complex [26];

however, for the purpose of extracting phase information,
one does not need a magnetic flux.
At this point we make use of the equivalence parity ⇔

phase lapse described in the beginning of this section (fol-
lowing [10]), and now we can finally conclude that the
existence (or not) of phase lapses between consecutive
resonances can simply be decided by inspecting the sign of
the Fano parameters for consecutive resonances (that are
experimentally observable: q > means that the Fano line
forms first the dip and then the peak, while for q < 0 the
situation is the opposite). This equivalence was suggested
in [12], by numerical results, but the analytical proof was
missing.
The quantities τnα(β) (defined in the paragraph above

Equation 7) are called effective coupling parameters, so
one can also say that the Fano parameter q carries infor-
mation about the relative sign of the effective coupling
parameters.
The analytical results derived in this section are illus-

trated by a numerical calculation in Figure 2, for the case
of an arbitrary-shaped quantum dot. In Figure 2a, we plot
the amplitudes and phases of the first five eigenmodes.
Since the eigenfunctions can be considered to be real, by
‘phase’ we mean actually the sign of the wave function. By
convention, let us assume that the color black in the figure
corresponds to the sign ‘+’ and red to the sign ‘-’.
If our quantum dot is connected to leads (the posi-

tion of the leads is indicated by the small blue arrows
in Figure 2a), the resulting transmittance is plotted in
Figure 2b, and the transmittance phase in Figure 2c. Fur-
thermore, if the dot is placed in one arm of an interferom-
eter, one obtains Fano lines - plotted in Figure 2d - with
both positive and negative sign of the Fano parameter.
The first two Fano resonances in Figure 2d are very
narrow, but indeed they form the dip first and then
the peak, meaning they have positive Fano parameter
(q > 0).
As expected, the numerical results confirm the ana-

lytical results presented in this section. The resonance
numbers 1 and 2 have the parity ‘+’ (meaning that the
leads are connected to points where the eigenmodes have
the same signs) and numbers 3, 4, and 5 have the parity
‘-’ (the corresponding eigenmodes have different signs in
the contact sites). As it was shown earlier in this section
between resonances of the same parity, the phase exhibits
a π lapse; while between resonances of different parity, the
phase remains constant. On the resonances themselves,
the phase evolves with π , on a gate interval equal to the
resonance width.
We notice that the resonances with the same parity gen-

erate Fano lines with the same sign for the Fano parameter.
It is then clear that by reversing the problem, one can
extract the parity and phase behavior from the sign of the
Fano parameters of consecutive resonances.
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Figure 2 The first five eigenfunctions of an arbitrary-shaped QD. (a) The sign distribution of the eigenmodes are plotted below the amplitudes
(by convention, we attribute the color black to the sign ‘+’ and the color red to the sign ‘-’). The small blue arrows indicate the position where the
leads will be connected. Transmittance amplitude (b) (which is proportional to the conductance) and phase (c), respectively, for the same QD with
the leads connected as mentioned. The conductance is in units 2 e2/h and the phase is in π units. (d) The corresponding Fano lines which would
result by inserting the same QD in an interferometer. Near each Fano resonance we wrote the sign of the Fano parameter.

Our calculations have another interesting implication
which is described in following: Let us imagine that one
contact on the QD is fixed, while the other can be moved
on the QD surface. Both contacts are further connected
to a ring and the ring to the leads. A variable gate poten-
tial applied on the QD generates Fano lines and the sign of
the Fano parameter q is given by the sign of �n(iα)�n(iβ),
for each eigenmode. While, as mentioned, the position
of one contact is varied on the QD surface, the Fano
parameter will only change sign if the ‘mobile’ contact
crossed a nodal line (i.e., reached a zone with an oppo-
site sign of the respective eigenmode). Therefore, one can
map the sign (phase) distributions of the eigenmodes. The
phase mapping of the eigenmodes on a 2D surface was
considered to be possible only for isospectral shapes, as
proposed by Moon et al. [28] (see also [29,30]). In pairs
of isospectral shapes, the wave functions can be expressed

in terms of each other, which brings a supplementary
information, allowing to extract the phase distributions,
if the amplitude distributions are known. Our proposed
scheme makes use of the Fano effect and it is not nec-
essary for the shape (for which the phase distributions
are extracted) to be isospectral. The drawback however,
comes from the fact that present experimental technics
do not allow - to our knowledge - to connect the leads
in arbitrary points on a QD surface; rather, the position
of the leads is fixed as they are defined by lithogra-
phy at the same time with the QD, for semiconductor
QDs.

Conclusions
We have shown that important transmittance phase infor-
mation can be extracted using the so-called ‘closed’ meso-
scopic interferometers, in spite of the fact that multiple
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interferences are in this case allowed, and it was generally
believed that a correct phase extraction would be blurred.
If a gate potential is applied on a QD inserted in one

arm of a mesoscopic ring (i.e., a closed interferometer),
the result in conductance would be the asymmetric Fano
resonances. We presented detailed calculations directly
relating the sign of the Fano parameter - for a dot +
ring system - with the behavior of transmission phase
between resonances of the bare dot. In-phase (or out-
of-phase) neighboring resonances of the dot correspond
to the Fano line shapes with the same (opposite) sign
for the Fano parameter. A lapse with π of the phase is
present (or absent) between in-phase (or out-of-phase)
resonances.
As mentioned, the important implication is that the

famous ‘phase lapse’ problem can be addressed in closed
interferometers simply by inspecting the sign of consec-
utive Fano parameters. If we apply this interpretation
to some existing experiments [24,25] which focused on
the Fano effect in closed interferometers (but did not
discuss the phase problem), a non-universality of the
phase-lapse aspect can be suggested, as one can notice
Fano lines in the same but also in the opposite sign of
the Fano parameter. This was first suggested in [12], but
the analytical proof was missing, and we provided it in
the ‘Results and discussion’ Section of this work. This
is the main result of our paper and should be impor-
tant because in the absence of analytical formulas, the
numerical results can always be considered as sample-
dependent.
An interesting implication would be that the Fano effect

can also be used to map the phase distribution of the
eigenmodes on a mesoscopic shape (previously, the map-
ping of the wave function phase was proposed for isospec-
tral shapes [28-30]). This is possible because the Fano
parameter carries information also about the parity of the
resonances.
The results presented in this paper are obtained for

the non-interacting model and they are either reproduced
from existing literature (for completeness), or new proofs
are provided where they were missing. The case with
interaction presents an increased complexity, and a deep
analysis will be the subject of a future work (in [31] we
present some results on a toy interacting model). Such an
analysis should be necessary, since the electronic correla-
tions are expected to play an important role in the phase
problem (see e.g., [3,14-17,20,21]).
We hope that our work will motivate new kind of exper-

iments, combining both closed and open interferometers,
in order to bring further clarification in the long-debated
phase lapse problem.
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