26 research outputs found

    Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Get PDF
    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as ‘transition state analogue’ inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs

    The Crystal Structure of OprG from Pseudomonas aeruginosa, a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    Get PDF
    Background: The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. Methodology/Principal Findings: In order to obtain more information about possible functions of OmpW family members we have solved the X-ray crystal structure of P. aeruginosa OprG at 2.4 A ˚ resolution. OprG forms an eightstranded b-barrel with a hydrophobic channel that leads from the extracellular surface to a lateral opening in the barrel wall. The OprG barrel is closed off from the periplasm by interacting polar and charged residues on opposite sides of the barrel wall. Conclusions/Significance: The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a latera

    Specialized Peptidoglycan Hydrolases Sculpt the Intra-bacterial Niche of Predatory Bdellovibrio and Increase Population Fitness

    Get PDF
    Bdellovibrio are predatory bacteria that have evolved to invade virtually all Gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound β-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that “regular” PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication
    corecore