1,604 research outputs found

    Boolean network simulations for life scientists

    Get PDF
    Modern life sciences research increasingly relies on computational solutions, from large scale data analyses to theoretical modeling. Within the theoretical models Boolean networks occupy an increasing role as they are eminently suited at mapping biological observations and hypotheses into a mathematical formalism. The conceptual underpinnings of Boolean modeling are very accessible even without a background in quantitative sciences, yet it allows life scientists to describe and explore a wide range of surprisingly complex phenomena. In this paper we provide a clear overview of the concepts used in Boolean simulations, present a software library that can perform these simulations based on simple text inputs and give three case studies. The large scale simulations in these case studies demonstrate the Boolean paradigms and their applicability as well as the advanced features and complex use cases that our software package allows. Our software is distributed via a liberal Open Source license and is freely accessible fro

    Mapeamento da cobertura vegetal remanescente do bioma caatinga.

    Get PDF
    Este trabalho aborda a metodologia utlizada para produzir o mapa dos remanescentes da cobertura vegetal e do uso das terras do bioma caatinga em recortes na escala 1:250.000, com caracterização básica das diversas tipologias vegetais mapeadas.1 CD-ROM

    Integrating Quantitative Knowledge into a Qualitative Gene Regulatory Network

    Get PDF
    Despite recent improvements in molecular techniques, biological knowledge remains incomplete. Any theorizing about living systems is therefore necessarily based on the use of heterogeneous and partial information. Much current research has focused successfully on the qualitative behaviors of macromolecular networks. Nonetheless, it is not capable of taking into account available quantitative information such as time-series protein concentration variations. The present work proposes a probabilistic modeling framework that integrates both kinds of information. Average case analysis methods are used in combination with Markov chains to link qualitative information about transcriptional regulations to quantitative information about protein concentrations. The approach is illustrated by modeling the carbon starvation response in Escherichia coli. It accurately predicts the quantitative time-series evolution of several protein concentrations using only knowledge of discrete gene interactions and a small number of quantitative observations on a single protein concentration. From this, the modeling technique also derives a ranking of interactions with respect to their importance during the experiment considered. Such a classification is confirmed by the literature. Therefore, our method is principally novel in that it allows (i) a hybrid model that integrates both qualitative discrete model and quantities to be built, even using a small amount of quantitative information, (ii) new quantitative predictions to be derived, (iii) the robustness and relevance of interactions with respect to phenotypic criteria to be precisely quantified, and (iv) the key features of the model to be extracted that can be used as a guidance to design future experiments

    Ophthalmic Complications of Bariatric Surgery

    Get PDF
    Obesity is increasing vastly in the world, and the number of bariatric surgeries being performed is also increasing. Patients being submitted to bariatric surgeries, especially malabsorptive procedures, have an increased risk of developing nutrient deficiencies, which can culminate in symptomatic hypovitaminosis, if supplementation is not done correctly. The eye and the optic system need an adequate level of several vitamins and minerals to perform properly, especially vitamin A, and this article wants to cover the main nutrients involved, the possible ophthalmic complications that can arise by their deficiency, and the management of those complications

    Monotone and near-monotone biochemical networks

    Get PDF
    Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion
    corecore