908 research outputs found

    Hsc70 Focus Formation at the Periphery of HSV-1 Transcription Sites Requires ICP27

    Get PDF
    The cellular chaperone protein Hsc70, along with components of the 26S proteasome and ubiquitin-conjugated proteins have been shown to be sequestered in discrete foci in the nuclei of herpes simplex virus 1 (HSV-1) infected cells. We recently reported that cellular RNA polymerase II (RNAP II) undergoes proteasomal degradation during robust HSV-1 transcription, and that the immediate early protein ICP27 interacts with the C-terminal domain and is involved in the recruitment of RNAP II to viral transcription/replication compartments.Here we show that ICP27 also interacts with Hsc70, and is required for the formation of Hsc70 nuclear foci. During infection with ICP27 mutants that are unable to recruit RNAP II to viral replication sites, viral transcript levels were greatly reduced, viral replication compartments were poorly formed and Hsc70 focus formation was curtailed. Further, a dominant negative Hsc70 mutant that cannot hydrolyze ATP, interfered with RNAP II degradation during HSV-1 infection, and an increase in ubiquitinated forms of RNAP II was observed. There was also a decrease in virus yields, indicating that proteasomal degradation of stalled RNAP II complexes during robust HSV-1 transcription and replication benefits viral gene expression.We propose that one function of the Hsc70 nuclear foci may be to serve to facilitate the process of clearing stalled RNAP II complexes from viral genomes during times of highly active transcription

    Characterizing cometary electrons with kappa distributions

    Get PDF
    The Rosetta spacecraft has escorted comet 67P/Churyumov-Gerasimenko since 6 August 2014 and has offered an unprecedented opportunity to study plasma physics in the coma. We have used this opportunity to make the fi rst characterization of cometary electrons with kappa distributions. Two three-dimensional kappa functions were fi t to the observations, which we interpret as two populations of dense and warm (density=10cm 3 , temperature=2×10 5 K, invariant kappa index=10 > 1000), and rare fi ed and hot (density=0.005cm 3 , temperature=5×10 5 K, invariant kappa index=1 – 10) electrons. We fi t the observations on 30 October 2014 when Rosetta was 20km from 67P, and 3AU from the Sun. We repeated the analysis on 15 August 2015 when Rosetta was 300km from the comet and 1.3AU from the Sun. Comparing the measurements on both days gives the fi rst comparison of the cometary electron environment between a nearly inactive comet far from the Sun and an active comet near perihelion. We fi nd that the warm population density increased by a factor of 3, while the temperature cooled by a factor of 2, and the invariant kappa index was unaffected. We fi nd that the hot population density increased by a factor of 10, while the temperature and invariant kappa index were unchanged. We conclude that the hot population is likely the solar wind halo electrons in the coma. The warm population is likely of cometary origin, but its mechanism for production is not known

    Single- versus two- layer intestinal anastomosis: a meta-analysis of randomized controlled trials

    Get PDF
    BACKGROUND: To compare single- with two- layer intestinal anastomosis after intestinal resection: a meta-analysis of randomized controlled trials. METHODS: Randomized controlled trials comparing single- with two-layer intestinal anastomosis were identified using a systematic search of Medline, Embase and the Cochrane Library Databases covering articles published from 1966 to 2004. Outcome of primary interest was postoperative leak. A risk ratio for trial outcomes and weighted pooled estimates for data were calculated. A fixed-effect model weighted using Mantel-Haenszel methods and a random-effect model using DerSimonian-Laird methods were employed. RESULTS: Six trials were analyzed, comprising 670 participants (single-layer group, n = 299; two-layer group, n = 371). Data on leaks were available from all included studies. Combined risk ratio using DerSimonian-Laird methods was 0.91 (95% CI = 0.49 to 1.69), and indicated no significant difference. Inter-study heterogeneity was significant (χ(2 )= 10.5, d.f. = 5, p = 0.06). CONCLUSION: No evidence was found that two-layer intestinal anastomosis leads to fewer post-operative leaks than single layer. Considering duration of the anastomosis procedure and medical expenses, single-layer intestinal anastomosis appears to represent the optimal choice for most surgical situations

    The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse

    Get PDF
    Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk. We applied quantitative mass spectrometry to identify proteins expressed in neuronal cells the abundance of which was altered after downregulation of the schizophrenia susceptibility factor dysbindin (Bloc1s8) or two other dysbindin-interacting polypeptides, which assemble into the octameric biogenesis of lysosome-related organelles complex 1 (BLOC-1). We found 491 proteins sensitive to dysbindin and BLOC-1 loss of function. Gene ontology of these 491 proteins singled out the actin cytoskeleton and the actin polymerization factor, the Arp2/3 complex, as top statistical molecular pathways contained within the BLOC-1-sensitive proteome. Subunits of the Arp2/3 complex were downregulated by BLOC-1 loss of function, thus affecting actin dynamics in early endosomes of BLOC-1-deficient cells. Furthermore, we demonstrated that Arp2/3, dysbindin, and subunits of the BLOC-1 complex biochemically and genetically interact, modulating Drosophila melanogaster synapse morphology and homeostatic synaptic plasticity. Our results indicate that ontologically prioritized proteomics identifies novel pathways that modify synaptic phenotypes associated with neurodevelopmental disorder gene defects

    Multiscale Currents Observed by MMS in the Flow Braking Region

    Get PDF
    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system

    Severe traumatic injury during long duration spaceflight: Light years beyond ATLS

    Get PDF
    Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight

    Effect of solution saturation state and temperature on diopside dissolution

    Get PDF
    Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields [Formula: see text] where the Mg-H exchange coefficient, n = 1.39, the apparent activation energy, E(a )= 332 kJ mol(-1), and the apparent rate constant, k = 10(41.2 )mol diopside cm(-2 )s(-1). Fits to the data with the pit nucleation model suggest that diopside dissolution proceeds through retreat of steps developed by nucleation of pits created homogeneously at the mineral surface or at defect sites, where homogeneous nucleation occurs at lower degrees of saturation than defect-assisted nucleation. Rate expressions for each mechanism (i) were fit to [Formula: see text] where the step edge energy (α) for homogeneously nucleated pits were higher (275 to 65 mJ m(-2)) than the pits nucleated at defects (39 to 65 mJ m(-2)) and the activation energy associated with the temperature dependence of site density and the kinetic coefficient for homogeneously nucleated pits (E(b-homogeneous )= 2.59 × 10(-16 )mJ K(-1)) were lower than the pits nucleated at defects (E(b-defect assisted )= 8.44 × 10(-16 )mJ K(-1))

    Clinical Deterioration during Antitubercular Treatment at a District Hospital in South Africa: The Importance of Drug Resistance and AIDS Defining Illnesses

    Get PDF
    Background: Clinical deterioration on drug therapy for tuberculosis is a common cause of hospital admission in Africa. Potential causes for clinical deterioration in settings of high HIV-1 prevalence include drug resistant Mycobacterium tuberculosis (M.tb), co-morbid illnesses, poor adherence to therapy, tuberculosis associated-immune reconstitution inflammatory syndrome (TB-IRIS) and subtherapeutic antitubercular drug levels. It is important to derive a rapid diagnostic work-up to determine the cause of clinical deterioration as well as specific management to prevent further clinical deterioration and death. We undertook this study among tuberculosis (TB) patients referred to an adult district level hospital situated in a high HIV-1 prevalence setting to determine the frequency, reasons and outcome for such clinical deterioration. Method: A prospective observational study conducted during the first quarter of 2007. We defined clinical deterioration as clinical worsening or failure to stabilise after 14 or more days of antitubercular treatment, resulting in hospital referral. We collected data on tuberculosis diagnosis and treatment, HIV-1 status and antiretroviral treatment, and investigated reasons for clinical deterioration as well as outcome. Results: During this period, 352 TB patients met inclusion criteria; 296 were admitted to hospital accounting for 17% of total medical admissions (n = 1755). Eighty three percent of TB patients (291/352) were known to be HIV-1 co-infected with a median CD4 count of 89cells/mm3 (IQR 38-157). Mortality among TB patients admitted to hospital was 16% (n = 48). The median duration of hospital admission was 9.5 days (IQR 4-18), longer than routine in this setting (4 days). Among patients in whom HIV-1 status was known (n = 324), 72% of TB patients (n = 232) had an additional illness to tuberculosis; new AIDS defining illnesses (n = 80) were the most frequent additional illnesses (n = 208) in HIV-1 co-infected patients (n = 291). Rifampin-resistant M.tb (n = 41), TB-IRIS (n = 51) and drug resistant bacterial infections (n = 12) were found in 12%, 14% and 3.4% of the 352 cases, respectively. Interpretation: In our setting, new AIDS defining illnesses, drug resistant M.tb and other drug resistant bacteria are important reasons for clinical deterioration in HIV-1 co-infected patients receiving antitubercular treatment. HIV-1 coinfected patients may be at increased risk of acquiring nosocomial drug resistant pathogens because profound immune suppression results in co-morbid illnesses that require prolonged inpatient admissions. Routine infection control is essential and needs to be strengthened in our setting. Copyright: © 2009 Pepper et al

    Component-wise incremental LTL model checking

    Get PDF
    Efficient symbolic and explicit-state model checking approaches have been developed for the verification of linear time temporal logic (LTL) properties. Several attempts have been made to combine the advantages of the various algorithms. Model checking LTL properties usually poses two challenges: one must compute the synchronous product of the state space and the automaton model of the desired property, then look for counterexamples that is reduced to finding strongly connected components (SCCs) in the state space of the product. In case of concurrent systems, where the phenomenon of state space explosion often prevents the successful verification, the so-called saturation algorithm has proved its efficiency in state space exploration. This paper proposes a new approach that leverages the saturation algorithm both as an iteration strategy constructing the product directly, as well as in a new fixed-point computation algorithm to find strongly connected components on-the-fly by incrementally processing the components of the model. Complementing the search for SCCs, explicit techniques and component-wise abstractions are used to prove the absence of counterexamples. The resulting on-the-fly, incremental LTL model checking algorithm proved to scale well with the size of models, as the evaluation on models of the Model Checking Contest suggests
    corecore