4,494 research outputs found

    Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution

    Get PDF
    Despite widespread use as an immunosuppressant, the therapeutic efficacy of the undecapeptide cyclosporine A (CyA) is compromised when given by the oral route because of the innate hydrophobicity of the drug molecule, potentially leading to poor aqueous solubility and bioavailability. The aim of this study was to develop and characterize nanofibers based on the water-miscible polymer polyvinylpyrrolidone (PVP), incorporating CyA preloaded into polymeric surfactants so as to promote micelle formation on hydration; therefore, this approach represents the novel combination of three dissolution enhancement methodologies, namely solid dispersion technology, micellar systems, and nanofibers with enhanced surface area. The preparation of the nanofibers was performed in two steps. First, mixed micelles composed of the water-soluble vitamin E derivative d-α-tocopheryl poly(ethylene glycol) 1000 succinate and the amphiphilic triblock polymer Pluronic F127 (Poloxamer 407) were prepared. The micelles were characterized in terms of size, surface charge, drug loading, and encapsulation efficiency using transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and scanning electron and atomic force microscopy analysis. Nanofibers composed of PVP and the drug-loaded surfactant system were then prepared via electrospinning, with accompanying thermal, spectroscopic, and surface topological analysis. Dissolution studies indicated an extremely rapid dissolution profile for the fibers compared to the drug alone, while wettability studies also indicated a marked decrease in contact angle compared to the drug alone. Overall, the new approach appears to offer a viable means for considerably improving the dissolution of the hydrophobic peptide CyA, with associated implications for improved oral bioavailability

    Development and Evaluation of Feline Tailored Amlodipine Besylate Mini-Tablets Using l-lysine as a Candidate Flavouring Agent

    Get PDF
    Felines may find orally administered medicines unpalatable, thus presenting a problem in the treatment of chronic conditions such as hypertension, a commonly diagnosed condition in felines requiring daily administration of medication. A pertinent example is amlodipine besylate, formulations of which are known to be poorly tolerated by cats. There is therefore a need to develop feline-specific delivery approaches that are both simple to administer and mask the taste of the drug, thereby enhancing the owner's commitment to treatment and the associated therapeutic outcome for the companion animal. In addition, it is helpful to develop accessible and reproducible means of assessing taste for pre-clinical selection, hence the use of recently developed taste biosensor systems for veterinary applications is an area of interest. This study focuses on developing feline-specific amlodipine besylate formulations by improving the taste using a suitable flavouring agent while reducing dosage form size to a 2 mm diameter mini-tablet. The choice of L-lysine as a flavouring agent was based on the dietary and taste preference of cats. The impact of L-lysine on the taste perception of the formulation was evaluated using a biosensor system (E-tongue) fitted with sensors sensitive to bitter tastes. The results showed L-lysine successfully masked bitterness, while the drug release studies suggest that it has no impact on drug dissolution. In addition, tableting parameters such as tablet mass uniformity, content uniformity, tablet diameter, thickness and hardness were all satisfactory. The present study suggests that amlodipine besylate mini-tablets containing L-lysine could improve the palatability and in turn support product acceptability and ease of administration. These data could have an impact on orally administered medicines for cats and other veterinary species through product differentiation and competitive advantage in the companion animal market sector. The study also outlines the use of the electronic tongue as a tool for formulation selection in the veterinary field

    A Potential Alternative Orodispersible Formulation to Prednisolone Sodium Phosphate Orally Disintegrating Tablets

    Get PDF
    The orally disintegrating tablet (ODT) has shown vast potential as an alternative oral dosage form to conventional tablets wherein they can disintegrate rapidly (≀30 s) upon contact with saliva fluid and should have an acceptable mouthfeel as long as their weight doesn’t exceed 500 mg. However, owing to the bitterness of several active ingredients, there is a need to find a suitable alternative to ODTs that maintains their features and can be taste-masked more simply and inexpensively. Therefore, electrospun nanofibers and solvent-cast oral dispersible films (ODFs) are used in this study as potential OD formulations for prednisolone sodium phosphate (PSP) that is commercially available as ODTs. The encapsulation efficiency (EE%) of the ODFs was higher (≈100%) compared to the nanofibers (≈87%), while the disintegration time was considerably faster for the electrospun nanofibers (≈30 s) than the solvent-cast ODFs (≈700 s). Hence, accelerated release rate of PSP from the nanofibers was obtained, due to their higher surface area and characteristic surface morphology that permitted higher wettability and thus, faster erosion. Taste-assessment study using the electronic-tongue quantified the bitterness threshold of the drug and its aversiveness concentration (2.79 mM). Therefore, a taste-masking strategy would be useful when further formulating PSP as an OD formulation

    Investigation of the microbial communities colonizing prepainted steel used for roofing and walling

    Get PDF
    © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. Microbial colonization of prepainted steel, commonly used in roofing applications, impacts their aesthetics, durability, and functionality. Understanding the relevant organisms and the mechanisms by which colonization occurs would provide valuable information that can be subsequently used to design fouling prevention strategies. Here, next-generation sequencing and microbial community finger printing (T-RFLP) were used to study the community composition of microbes colonizing prepainted steel roofing materials at Burrawang, Australia and Kapar, Malaysia over a 52-week period. Community diversity was low and was dominated by Bacillus spp., cyanobacteria, actinobacteria, Cladosporium sp., Epicoccum nigrum, and Teratosphaeriaceae sp. Cultivation-based methods isolated approximately 20 different fungi and bacteria, some of which, such as E. nigrum and Cladosporium sp., were represented in the community sequence data. Fluorescence in situ hybridization imaging showed that fungi were the most dominant organisms present. Analysis of the sequence and T-RFLP data indicated that the microbial communities differed significantly between locations and changed significantly over time. The study demonstrates the utility of molecular ecology tools to identify and characterize microbial communities associated with the fouling of painted steel surfaces and ultimately can enable the targeted development of control strategies based on the dominant species responsible for fouling

    The impact of sport participation on bone mass and geometry in adolescent males

    Get PDF
    Exercise is an effective approach for developing bone mass and adolescence is a key period to optimize bone health. However, sports specific training may have different effects on bone outcomes. This study examined the differences on bone outcomes between osteogenic (football) and non-osteogenic (swimming and cycling) sports and a control group in adolescent males. Methods: One hundred twenty one males (13.1±0.1 years) were measured: 41 swimmers, 37 footballers, 29 cyclists and 14 controls. Dual energy X-ray absorptiometry measured bone mineral density (BMD) and content (BMC) at lumbar spine, right and left hip and total body. Hip structural analysis evaluated bone geometry at the femoral neck. Quantitative ultrasound evaluated bone stiffness at both feet. Results: Footballers had significantly higher BMD at total body less head (7-9%), total hip (12-2%) and legs (7-11%) compared to all groups and significantly higher BMD at the femoral neck than controls (14%). Cyclists had higher BMD at the trochanter (10%) and BMC at the arms (10%) compared to controls. Geometrical analysis showed that footballers had significantly higher cross-sectional area (8-19%) compared to all groups, cross-sectional moment of inertia (17 %) compared to controls and section modulus compared to cyclists (11%) and controls (21%). Footballers had significantly higher bone stiffness compared to all groups (10-20%) at the dominant foot and (12-13%) at the nondominant foot compared to swimmers and controls. Conclusions: Adolescent male footballers exhibited higher bone density, geometry and stiffness compared to swimmers, cyclists and controls. Although swimmers and cyclists had higher bone outcomes compared to controls, these differences were not significant.The research leading to these results has received funding from the European Union Seventh Framework Programme ([FP7/2007-2013] under grant agreement n°. PCIG13-GA-2013-618496

    In vitro and in vivo biological assessment of dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion

    Get PDF
    The treatment of corneal abrasion currently involves the topical administration of antibiotics, with moxifloxacin HCl (0.5% w/v) eye drops being one of the most widely used treatments. Our previous work (Tawfik et al., 2020) involved the development of coaxial poly-lactic-co-glycolic acid (PLGA) and polyvinylpyrrolidone (PVP) nanofibers loaded with the antibiotic moxifloxacin HCl and the anti-scarring agent pirfenidone in the core (PVP) and shell (PLGA) respectively, with a view to the system comprising an ocular insert for the combination therapy of corneal abrasion. In this study, we examine the antimicrobial, anti-scarring and pharmacokinetic properties of the fibers alongside consideration of their toxicity and propensity for irritation. Minimum inhibitory concentration and zone of inhibition studies against S. aureus and P. aeruginosa were performed, while fibroblast cell viability and α-smooth muscle actin (α-SMA, a biomarker for scar formation) were measured using MTT and Western Blot assays, respectively. Pharmacokinetic studies and efficacy against infection were performed using a rabbit model, while ocular irritancy was assessed using the Draize test. The studies demonstrated that the antimicrobial activity of the moxifloxacin HCl was preserved following encapsulation into the nanofibers, while the downregulation of α-SMA was demonstrated using concentrations below the IC20 values (concentration required to decrease corneal fibroblast viability by no more than 20%). The pharmacokinetic study showed retention and sustained release of the moxifloxacin HCl over a 24-hour period, in contrast to equivalent eye drops which required four times daily dosing. Evidence of low level (according to the MMTS scale) irritation was detected for the nanofiber systems. Overall, the study has demonstrated that the dual drug-loaded nanofiber system shows potential for once daily dosing as an ocular insert for the treatment of corneal abrasion

    FCNC Processes from D-brane Instantons

    Get PDF
    Low string scale models might be tested at the LHC directly by their Regge resonances. For such models it is important to investigate the constraints of Standard Model precision measurements on the string scale. It is shown that highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic decays of the D0-meson provide non-negligible lower bounds on both the perturbatively and surprisingly also non-perturbatively induced string theory couplings. We present both the D-brane instanton formalism to compute such amplitudes and discuss various possible scenarios and their constraints on the string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file adde

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD

    Influence of low birth weight on C-reactive protein in asymptomatic younger adults: the bogalusa heart study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both low birth weight, an indicator of intrauterine growth restriction, and low grade systemic inflammation depicted by high sensitivity C-reactive protein (hs-CRP) have emerged as independent predictors of cardiovascular (CV) disease and type 2 diabetes. However, information linking low birth weight and hs-CRP in a biracial (black/white) population is scant. We assessed a cohort of 776 black and white subjects (28% black, 43% male) aged 24-43 years (mean 36.1 years) enrolled in the Bogalusa Heart Study with regard to birth weight and gestational age data were retrieved from Louisiana State Public Health Office.</p> <p>Findings</p> <p>Black subjects had significantly lower birth weight than white subjects (3.145 kg vs 3.441 kg, p < 0.0001) and higher hs-CRP level (3.29 mg/L vs 2.57 mg/L, p = 0.011). After adjusting for sex, age, body mass index (BMI), smoking status and race (for total sample), the hs-CRP level decreased across quartiles of increasing birth weight in white subjects (p = 0.001) and the combined sample (p = 0.002). Adjusting for sex, age, BMI, smoking status and race for the total sample in a multivariate regression model, low birth weight was retained as an independent predictor variable for higher hs-CRP levels in white subjects (p = 0.004) and the total sample (p = 0.007). Conversely, the area under the receiver operative curve (c statistic) analysis adjusted for race, sex, age, smoking status and BMI yielded a value of 0.777 with regard to the discriminating value of hs-CRP for predicting low birth weight.</p> <p>Conclusions</p> <p>The deleterious effect of low birth weight on systemic inflammation depicted by the hs-CRP levels in asymptomatic younger adults may potentially link fetal growth retardation, CV disease and diabetes, with important health implications.</p
    • 

    corecore