52 research outputs found

    Risk factors and myocardial infarction in patients with obstructive sleep apnea: impact of β2-adrenergic receptor polymorphisms

    Get PDF
    BACKGROUND: The increased sympathetic nervous activity in patients with obstructive sleep apnea (OSA) is largely responsible for the high prevalence of arterial hypertension, and it is suggested to adversely affect triglyceride and high-density lipoprotein (HDL) cholesterol levels in these patients. The functionally relevant polymorphisms of the β2-adrenergic receptor (Arg-47Cys/Arg16Gly and Gln27Glu) have been shown to exert modifying effects on these risk factors in previous studies, but results are inconsistent. METHODS: We investigated a group of 429 patients (55 ± 10.7 years; 361 men, 68 women) with moderate to severe obstructive sleep apnea (apnea/hypopnea index (AHI) 29.1 ± 23.1/h) and, on average, a high cardiovascular risk profile (body mass index 31.1 ± 5.6, with hypertension in 60.1%, dyslipidemia in 49.2%, and diabetes in 17.2% of patients). We typed the β2-adrenergic receptor polymorphisms and investigated the five most frequent haplotypes for their modifying effects on OSA-induced changes in blood pressure, heart rate, and lipid levels. The prevalence of cardiovascular risk factors and coronary heart disease (n = 55, 12.8%) and survived myocardial infarction (n = 27, 6.3%) were compared between the genotypes and haplotypes. RESULTS: Multivariate linear/logistic regressions revealed a significant and independent (from BMI, age, sex, presence of diabetes, use of antidiabetic, lipid-lowering, and antihypertensive medication) influence of AHI on daytime systolic and diastolic blood pressure, heart rate, prevalence of hypertension, and triglyceride and HDL levels. The β2-adrenergic receptor genotypes and haplotypes showed no modifying effects on these relationships or on the prevalence of dyslipidemia, diabetes, and coronary heart disease, yet, for all three polymorphisms, heterozygous carriers had a significantly lower relative risk for myocardial infarction (Arg-47Cys: n = 195, odds ratio (OR) = 0.32, P = 0.012; Arg16Gly: n = 197, OR = 0.39, P = 0.031; Gln27Glu: OR = 0.37, P = 0.023). Carriers of the most frequent haplotype (n = 113) (haplotype 1; heterozygous for all three polymorphisms) showed a five-fold lower prevalence of survived myocardial infarction (OR = 0.21, P = 0.023). CONCLUSION: Our study showed no significant modifying effect of the functionally relevant β2-adrenergic receptor polymorphisms on OSA-induced blood pressure, heart rate, or lipid changes. Nevertheless, heterozygosity of these polymorphisms is associated with a lower prevalence of survived myocardial infarction in this group with, on average, a high cardiovascular risk profile

    Synthesis of carbon nanotubes with and without catalyst particles

    Get PDF
    The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au) and poor metals (e.g. In, Pb) have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis

    A cross-sectional study of US rural adults’ consumption of fruits and vegetables: do they consume at least five servings daily?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rural residents are increasingly identified as being at greater risk for health disparities. These inequities may be related to health behaviors such as adequate fruits and vegetable consumption. There is little national-level population-based research about the prevalence of fruit and vegetable consumption by US rural population adults. The objective of this study was to examine the prevalence differences between US rural and non-rural adults in consuming at least five daily servings of combined fruits and vegetables.</p> <p>Methods</p> <p>Cross-sectional analysis of weighted 2009 Behavioral Risk Factor Surveillance Survey (BRFSS) data using bivariate and multivariate techniques. 52,259,789 US adults were identified as consuming at least five daily servings of fruits and vegetables of which 8,983,840 were identified as living in rural locales.</p> <p>Results</p> <p>Bivariate analysis revealed that in comparison to non-rural US adults, rural adults were less likely to consume five or more daily servings of fruits and vegetables (OR = 1.161, 95% CI 1.160-1.162). Logistic regression analysis revealed that US rural adults consuming at least five daily servings of fruits and vegetables were more likely to be female, non-Caucasian, married or living with a partner, living in a household without children, living in a household whose annual income was > $35,000, and getting at least moderate physical activity. They were also more likely to have a BMI of <30, have a personal physician, have had a routine medical exam in the past 12 months, self-defined their health as good to excellent and to have deferred medical care because of cost. When comparing the prevalence differences between rural and non-rural US adults within a state, 37 States had a lower prevalence of rural adults consuming at least five daily servings of fruits and vegetables and 11 States a higher prevalence of the same.</p> <p>Conclusions</p> <p>This enhanced understanding of fruit and vegetable consumption should prove useful to those seeking to lessen the disparity or inequity between rural and non-rural adults. Additionally, those responsible for health-related planning could benefit from the knowledge of how their state ranks in comparison to others vis-à-vis the consumption of fruits and vegetables by rural adults---a population increasingly being identified as one at risk for health disparities.</p

    Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view

    Get PDF
    Background Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. Results We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Conclusions Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.TU Berlin, Open-Access-Mittel - 201

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Tip coupling and array effects of gold nanoatennas in near-field microscopy

    No full text
    Scattering-type scanning near-field optical microscopy (s-SNOM) is one of the predominant techniques for the nanoscale characterization of optical properties. The optical response of nanoantennas in s-SNOM is highly sensitive to their environment, including influences of the probing tip or neighboring resonators. Dielectric tips are commonly employed to minimize tip-related perturbations, although they provide a comparatively weak scattering signal. Here we show that when using metallic tips, it is possible to select between distinct weak and strong tip–antenna coupling regimes by careful tailoring of the illumination conditions and resonator orientation. This enables the use of highly scattering metallic instead of dielectric tips for mapping plasmonic modes with comparatively higher signal strengths. This is a particular advantage for the retrieval of near-field spectra, which simultaneously require high near-field signals and unperturbed field patterns. We leverage our approach to analyze the collective effects of nanoantenna arrays, phenomena that are well understood in the optical far-field but have not been extensively studied in the near-field. Probing the dependence of the optical response on the array field size, we identify three regimes: the single rod regime, the intermediate regime, and the array-like regime. We show that these array effects give rise to characteristic spectral features originating from a complex interplay of radiative coupling and plasmon hybridization. These results provide evidence that long-range interactions of antennas also influence the local optical response that is probed in s-SNOM and demonstrate how collective resonances emerge from single building blocks, providing guidelines for optimized array designs for near- and far-field applications

    ERP evidence for the recognition of emotional prosody through simulated cochlear implant strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emotionally salient information in spoken language can be provided by variations in speech melody (prosody) or by emotional semantics. Emotional prosody is essential to convey feelings through speech. In sensori-neural hearing loss, impaired speech perception can be improved by cochlear implants (CIs). Aim of this study was to investigate the performance of normal-hearing (NH) participants on the perception of emotional prosody with vocoded stimuli. Semantically neutral sentences with emotional (happy, angry and neutral) prosody were used. Sentences were manipulated to simulate two CI speech-coding strategies: the Advance Combination Encoder (ACE) and the newly developed Psychoacoustic Advanced Combination Encoder (PACE). Twenty NH adults were asked to recognize emotional prosody from ACE and PACE simulations. Performance was assessed using behavioral tests and event-related potentials (ERPs).</p> <p>Results</p> <p>Behavioral data revealed superior performance with original stimuli compared to the simulations. For simulations, better recognition for happy and angry prosody was observed compared to the neutral. Irrespective of simulated or unsimulated stimulus type, a significantly larger P200 event-related potential was observed for happy prosody after sentence onset than the other two emotions. Further, the amplitude of P200 was significantly more positive for PACE strategy use compared to the ACE strategy.</p> <p>Conclusions</p> <p>Results suggested P200 peak as an indicator of active differentiation and recognition of emotional prosody. Larger P200 peak amplitude for happy prosody indicated importance of fundamental frequency (F0) cues in prosody processing. Advantage of PACE over ACE highlighted a privileged role of the psychoacoustic masking model in improving prosody perception. Taken together, the study emphasizes on the importance of vocoded simulation to better understand the prosodic cues which CI users may be utilizing.</p
    corecore