15,936 research outputs found

    Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c

    Get PDF
    The idea that the reduction of the strange quark suppression in string fragmentation leads to the enhancement of strange particle yield in nucleus-nucleus collisions is applied to study the singly and multiply strange particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this mechanism the strange quark suppression factor is related to the effective string tension, which increases in turn with the increase of the energy, of the centrality and of the mass of colliding system. The WA97 observation that the strange particle enhancement increases with the increasing of centrality and of strange quark content in multiply strange particles in Pb-Pb collisions with respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR

    Stationarity and geometric ergodicity of a class of nonlinear ARCH models

    Get PDF
    A class of nonlinear ARCH processes is introduced and studied. The existence of a strictly stationary and β\beta-mixing solution is established under a mild assumption on the density of the underlying independent process. We give sufficient conditions for the existence of moments. The analysis relies on Markov chain theory. The model generalizes some important features of standard ARCH models and is amenable to further analysis.Comment: Published at http://dx.doi.org/10.1214/105051606000000565 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Net charge fluctuation and string fragmentation

    Full text link
    We present simulation results of net charge fluctuation in Au+AuAu+Au collisions at snn\sqrt{s_{nn}}=130 GeV from a dynamic model, JPCIAE. The calculations are done for the quark-gluon phase before hadronization, the pion gas, the resonance pion gas from ρ\rho and ω\omega decays and so on. The simulations of the charge fluctuation show that the discrepancy exists between the dynamic model and the thermal model for a pion gas and a resonance pion gas from ρ\rho and ω\omega decays while the simulated charge fluctuation of the quark-gluon phase is close to the thermal model prediction. JPCIAE results of net charge fluctuation in the hardonic phase are nearly 4-5 times larger than one for the quark-gluon phase, which implies that the charge fluctuation in the quark-gluon phase may not survive the hadronization (string fragmentation) as implemented in JPCIAE.Comment: 9 pages, 3 figure

    PACIAE 2.0: An updated parton and hadron cascade model (program) for the relativistic nuclear collisions

    Full text link
    We have updated the parton and hadron cascade model PACIAE for the relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7 to based on PYTHIA 6.4, and renamed as PACIAE 2.0. The main physics concerning the stages of the parton initiation, parton rescattering, hadronization, and hadron rescattering were discussed. The structures of the programs were briefly explained. In addition, some calculated examples were compared with the experimental data. It turns out that this model (program) works well.Comment: 23 pages, 7 figure

    Increase of Effective String Tension and Production of Strange Particles

    Get PDF
    The increase of effective string tension as a result of the hard gluon kinks on a string is investigated using a parametrization form. In this form the effective string tension increasing with energies in hadron-hadron collisions is due to the mini-jet (gluon) production in the collisions. The data of the energy dependence of the strange quark suppression factor in hh collisions are very well reproduced with this mechanism. Meanwhile, the experimental phenomena of approximate energy independence of the strange quark suppression factor in e+^+e^--annihilations are discussed.Comment: LaTeX, 2 figure

    Charged multiplicity density and number of participant nucleons in relativistic nuclear collisions

    Full text link
    The energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic p+pˉp+\bar p experimental data and the PHOBOS and PHENIX Au+AuAu+Au data at RHIC energy could be fairly reproduced within the framework of JPCIAE model and without retuning the model parameters. The predictions for Pb+PbPb+Pb collisions at the LHC energy were also given. We computed the participant nucleon distributions using different methods. It was found that the number of participant nucleons is not a well defined variable both experimentally and theoretically. Thus it may be inappropriate to use the charged particle pseudorapidity density per participant pair as a function of the number of participant nucleons for distinguishing various theoretical models. A discussion for the effect of different definitions in nuclear radius (diffused or sharp) was given.Comment: 15 pages, 7 figure

    Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    Get PDF
    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p+pˉp+\bar p experimental data and the PHOBOS and PHENIX Au+AuAu+Au data at snn\sqrt s_{nn}=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy Au+AuAu+Au collisions and for Pb+PbPb+Pb collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, ,isnotawelldefinedvariablebothexperimentallyandtheoretically.Therefore,itisinappropriatetousechargedparticlepseudorapiditydensityperparticipantpairasafunctionof, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.

    LUCIAE 3.0: A new version of a computer program for Firecracker Model and rescattering in relativistic heavy-ion collisions

    Get PDF
    LUCIAE is a Monte Carlo program that, connected to FRITIOF, implements both the Firecracker Model (FCM), a possible mechanism for collective multi-gluon emission from the colour fields of interacting strings, and the reinteraction of the final state hadrons in relativistic heavy ion collisions. This paper includes a brief presentation of the dynamics of LUCIAE with an emphasis on the new features in this version, as well as a description of the program.Comment: LaTeX, no figur
    corecore