88 research outputs found

    Nuclear Receptors and the Warburg effect in cancer

    Get PDF
    In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950’s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter-intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro-environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets

    Vitamin D Receptor Deficiency and Low Vitamin D Diet Stimulate Aortic Calcification and Osteogenic Key Factor Expression in Mice

    Get PDF
    Low levels of 25-hydroxy vitamin D (25(OH)D) are associated with cardiovascular diseases. Herein, we tested the hypothesis that vitamin D deficiency could be a causal factor in atherosclerotic vascular changes and vascular calcification. Aortic root sections of vitamin D receptor knockout (VDRβˆ’/βˆ’) mice that were stained for vascular calcification and immunostained for osteoblastic differentiation factors showed more calcified areas and a higher expression of the osteogenic key factors Msx2, Bmp2, and Runx2 than the wild-type mice (P<0.01). Data from LDL receptor knockout (LDLRβˆ’/βˆ’) mice that were fed western diet with either low (50 IU/kg), recommended (1,000 IU/kg), or high (10,000 IU/kg) amounts of vitamin D3 over 16 weeks revealed increasing plasma concentrations of 25(OH)D (P<0.001) with increasing intake of vitamin D, whereas levels of calcium and phosphorus in plasma and femur were not influenced by the dietary treatment. Mice treated with the low vitamin D diet had more calcified lesions and a higher expression of Msx2, Bmp2, and Runx2 in aortic roots than mice fed recommended or high amounts of vitamin D (P<0.001). Taken together, these findings indicate vitamin D deficiency as a risk factor for aortic valve and aortic vessel calcification and a stimulator of osteogenic key factor expression in these vascular areas

    The novel estrogen-induced gene EIG121 regulates autophagy and promotes cell survival under stress

    Get PDF
    We previously identified a novel estrogen-induced gene, EIG121, as being differentially regulated in endometrioid and nonendometrioid endometrial carcinoma. The function of EIG121 was unknown. Using a tetracycline-inducible system, we found that overexpression of EIG121, but not of LacZ, caused a profound suppression of cell growth. Subcellular fractionation and immunofluroscent labeling indicated that EIG121 was a transmembrane protein localized in the plasma membrane-late endosome–lysosome compartments. Deletion of the putative transmembrane domain abolished the membrane association. In cells overexpressing EIG121, cytoplasmic vacuoles accumulated after EIG121 induction, and the autophagosome marker LC3 translocated into punctuate, dot-like structures. Electron microscopy revealed that in cells overexpressing EIG121, autophagosomes were markedly increased. Overexpression of EIG121 also increased the cells containing acidic vesicles and induced lysosomal degradation of long-lived proteins. In MCF-7 cells, both EIG121 and LC3 were rapidly degraded by a lysosomal mechanism after starvation. Knockdown of EIG121 blocked starvation-induced LC3 degradation. By itself, knockdown of EIG121 did not affect cell survival. When combined with starvation or cytotoxic agents, EIG121 knockdown greatly increased apoptosis. Our results suggest that EIG121 is associated with the endosome–lysosome compartments and may have an important role in autophagy. Under unfavorable conditions such as starvation and exposure to cytotoxic agents, EIG121 may protect cells from cell death by upregulating the autophagy pathway

    The Appearance and Modulation of Osteocyte Marker Expression during Calcification of Vascular Smooth Muscle Cells

    Get PDF
    Vascular calcification is an indicator of elevated cardiovascular risk. Vascular smooth muscle cells (VSMCs), the predominant cell type involved in medial vascular calcification, can undergo phenotypic transition to both osteoblastic and chondrocytic cells within a calcifying environment.In the present study, using in vitro VSMC calcification studies in conjunction with ex vivo analyses of a mouse model of medial calcification, we show that vascular calcification is also associated with the expression of osteocyte phenotype markers. As controls, the terminal differentiation of murine calvarial osteoblasts into osteocytes was induced in vitro in the presence of calcifying medium (containing ß-glycerophosphate and ascorbic acid), as determined by increased expression of the osteocyte markers DMP-1, E11 and sclerostin. Culture of murine aortic VSMCs under identical conditions confirmed that the calcification of these cells can also be induced in similar calcifying medium. Calcified VSMCs had increased alkaline phosphatase activity and PiT-1 expression, which are recognized markers of vascular calcification. Expression of DMP-1, E11 and sclerostin was up-regulated during VSMC calcification in vitro. Increased protein expression of E11, an early osteocyte marker, and sclerostin, expressed by more mature osteocytes was also observed in the calcified media of Enpp1(-/-) mouse aortic tissue.This study has demonstrated the up-regulation of key osteocytic molecules during the vascular calcification process. A fuller understanding of the functional role of osteocyte formation and specifically sclerostin and E11 expression in the vascular calcification process may identify novel potential therapeutic strategies for clinical intervention

    Gene Expression Patterns in Peripheral Blood Correlate with the Extent of Coronary Artery Disease

    Get PDF
    Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall

    Impact of vitamin D metabolism on clinical epigenetics

    Get PDF
    The bioactive vitamin D (VD) metabolite, 1,25-dihydroxyvitamin D3 regulates essential pathways of cellular metabolism and differentiation via its nuclear receptor (VDR). Molecular mechanisms which are known to play key roles in aging and cancer are mediated by complex processes involving epigenetic mechanisms contributing to efficiency of VD-activating CYP27A1 and CYP27B1 or inactivating CYP24 enzymes as well as VDR which binds to specific genomic sequences (VD response elements or VDREs). Activity of VDR can be modulated epigenetically by histone acetylation. It co-operates with other nuclear receptors which are influenced by histone acetyl transferases (HATs) as well as several types of histone deacetylases (HDACs). HDAC inhibitors (HDACi) and/or demethylating drugs may contribute to normalization of VD metabolism. Studies link VD signaling through the VDR directly to distinct molecular mechanisms of both HAT activity and the sirtuin class of HDACs (SIRT1) as well as the forkhead transcription factors thus contributing to elucidate complex epigenetic mechanisms for cancer preventive actions of VD

    Ghrelin Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells through the ERK Pathway

    Get PDF
    Vascular calcification results from osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and is a major risk factor for cardiovascular events. Ghrelin is a newly discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagog receptor (GHSR). Several studies have identified the protective effects of ghrelin on the cardiovascular system, however research on the effects and mechanisms of ghrelin on vascular calcification is still quite rare. In this study, we determined the effect of ghrelin on osteoblastic differentiation of VSMCs and investigated the mechanism involved using the two universally accepted calcifying models of calcifying vascular smooth muscle cells (CVSMCs) and beta-glycerophosphate (beta-GP)-induced VSMCs. Our data demonstrated that ghrelin inhibits osteoblastic differentiation and mineralization of VSMCs due to decreased alkaline phosphatase (ALP) activity, Runx2 expression, bone morphogenetic protein-2 (BMP-2) expression and calcium content. Further study demonstrated that ghrelin exerted this suppression effect via an extracellular signal-related kinase (ERK)-dependent pathway and that the suppression effect of ghrelin was time dependent and dose dependent. Furthermore, inhibition of the growth hormone secretagog receptor (GHSR), the ghrelin receptor, by siRNA significantly reversed the activation of ERK by ghrelin. In conclusion, our study suggests that ghrelin may inhibit osteoblastic differentiation of VSMCs through the GHSR/ERK pathway

    The Molecular Evolution of the p120-Catenin Subfamily and Its Functional Associations

    Get PDF
    p120-catenin (p120) is the prototypical member of a subclass of armadillo-related proteins that includes Ξ΄-catenin/NPRAP, ARVCF, p0071, and the more distantly related plakophilins 1–3. In vertebrates, p120 is essential in regulating surface expression and stability of all classical cadherins, and directly interacts with Kaiso, a BTB/ZF family transcription factor.To clarify functional relationships between these proteins and how they relate to the classical cadherins, we have examined the proteomes of 14 diverse vertebrate and metazoan species. The data reveal a single ancient Ξ΄-catenin-like p120 family member present in the earliest metazoans and conserved throughout metazoan evolution. This single p120 family protein is present in all protostomes, and in certain early-branching chordate lineages. Phylogenetic analyses suggest that gene duplication and functional diversification into β€œp120-like” and β€œΞ΄-catenin-like” proteins occurred in the urochordate-vertebrate ancestor. Additional gene duplications during early vertebrate evolution gave rise to the seven vertebrate p120 family members. Kaiso family members (i.e., Kaiso, ZBTB38 and ZBTB4) are found only in vertebrates, their origin following that of the p120-like gene lineage and coinciding with the evolution of vertebrate-specific mechanisms of epigenetic gene regulation by CpG island methylation.The p120 protein family evolved from a common Ξ΄-catenin-like ancestor present in all metazoans. Through several rounds of gene duplication and diversification, however, p120 evolved in vertebrates into an essential, ubiquitously expressed protein, whereas loss of the more selectively expressed Ξ΄-catenin, p0071 and ARVCF are tolerated in most species. Together with phylogenetic studies of the vertebrate cadherins, our data suggest that the p120-like and Ξ΄-catenin-like genes co-evolved separately with non-neural (E- and P-cadherin) and neural (N- and R-cadherin) cadherin lineages, respectively. The expansion of p120 relative to Ξ΄-catenin during vertebrate evolution may reflect the pivotal and largely disproportionate role of the non-neural cadherins with respect to evolution of the wide range of somatic morphology present in vertebrates today

    Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer

    Get PDF
    BACKGROUND: Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. PURPOSE: Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. METHODOLOGY/PRINCIPAL FINDINGS: BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFΞΊB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. CONCLUSIONS/SIGNIFICANCE: The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers
    • …
    corecore