8 research outputs found

    Maltenes and Asphaltenes of Petroleum Vacuum Residues: Physico-Chemical Characterization

    No full text
    Solvent separation is frequently applied to petroleum vacuum residues to reduce the coke-forming tendencies of these materials. This process is capable of removing all or a substantial amount of asphaltenes from feedstocks that are destined for further processing and thus applied as the first step of refining. Maltenes and asphaltenes obtained from vacuum residues of Heera (HVR) and Jodhpur (JVR) Indian crude oils using n-hexane, n-heptane, and soluble and insoluble fractions obtained using ethyl acetate, were characterized for elemental analysis, molecular weight, conradson carbon residue (CCR), specific gravity, and pour points. The resulting degree of removal of asphaltenes ranged from 10–28 wt% of the HVR and 25–50 wt% of the JVR. The increasing trend of the American Petroleum Institute (API) gravity and the decreasing trend of CCR and pour point are observed with the increase in removal of asphaltenes. Keywords: asphaltenes, elemental analysis, maltenes, petroleum, vacuum residu

    Structural Characterization of Asphaltenes and Ethyl Acetate Insoluble Fractions of Petroleum Vacuum Residues

    No full text
    Asphaltenes and insoluble fractions of vacuum residues (VRs) of two Indian crude oils (viz. Heera and Jodhpur) of different specific gravity were obtained by precipitation of VRs in n-hexane, n-heptane, and ethyl acetate, and also by subsequent reprecipitation of n-heptane and ethyl acetate soluble fractions by n-pentane. The effect of various solvents on average molecular structure of asphaltenes and insolubles was studied using nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), and size exclusion chromatography (SEC). The asphaltenes and insolubles of Jodhpur VR have higher amounts of high molecular weight species with a high concentration of condensed and substituted aromatic rings, branched and/or short alkyl side chains, oxygen and nitrogen functionalities, compared to that of Heera VR. Ethyl acetate insolubles comprise a higher number of substituted aromatic structures, branched aliphatic structures, complex average unit structures, nitrogen and oxygen functionalities, and high molecular weight (MW) species as compared to hexane and heptane asphaltenes. Heptane insolubles consist of more naphthenic rings condensed with aromatic rings than C6A and EAI. Keywords: asphaltenes, FTIR, insolubles, NMR, petroleum, SEC, vacuum residu

    Biological Oils as Precursors to Novel Polymeric Materials

    No full text
    corecore