10 research outputs found

    The amyloid precursor protein controls PIKfyve function

    Get PDF
    While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease

    Selective and Signal-dependent Recruitment of Membrane Proteins to Secretory Granules Formed by Heterologously Expressed von Willebrand Factor

    No full text
    von Willebrand factor (vWF) is a large, multimeric protein secreted by endothelial cells and involved in hemostasis. When expressed in AtT-20 cells, vWF leads to the de novo formation of cigar-shaped organelles similar in appearance to the Weibel-Palade bodies of endothelial cells in which vWF is normally stored before regulated secretion. The membranes of this vWF-induced organelle, termed the pseudogranule, are uncharacterized. We have examined the ability of these pseudogranules, which we show are secretagogue responsive, to recruit membrane proteins. Coexpression experiments show that the Weibel-Palade body proteins P-selectin and CD63, as well as the secretory organelle membrane proteins vesicle-associated membrane protein-2 and synaptotagmin I are diverted away from the endogenous adrenocorticotropic hormone-containing secretory granules to the vWF-containing pseudogranules. However, transferrin receptor, lysosomal-associated membrane protein 1, and sialyl transferase are not recruited. The recruitment of P-selectin is dependent on a tyrosine-based motif within its cytoplasmic domain. Our data show that vWF pseudogranules specifically recruit a subset of membrane proteins, and that in a process explicitly driven by the pseudogranule content (i.e., vWF), the active recruitment of at least one component of the pseudogranule membrane (i.e., P-selectin) is dependent on residues of P-selectin that are cytosolic and therefore unable to directly interact with vWF

    Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    No full text
    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors

    Systemic and CNS Inflammation Crosstalk: Implications for Alzheimer’s Disease

    No full text
    corecore